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Resumo

No contexto das mudanças climáticas e seus efeitos nos eventos climáticos extremos, a
previsão e monitoramento de raios é crucial, especialmente em regiões propensas a esses
eventos. Neste contexto, este trabalho visa desenvolver e avaliar modelos de aprendizado
profundo para prever raios com até 6 horas de antecedência, utilizando como entrada da-
dos meteorológicos globalmente disponíveis do Global Data Assimilation System (GDAS),
e como alvo dados de ocorrências de raios fornecidos pelo grupo de eletricidade atmosférica
(ELAT) do Instituto Nacional de Pesquisas Espaciais (INPE). Como estudo de caso, foi
selecionada a região que compreende o Estado da Bahia, Brasil, por possuir uma vasta
área onde muitos empreendimentos elétricos estão sendo desenvolvidos, o que justifica o
estudo e aplicação dessa pesquisa para essa região. Vários modelos de aprendizagem pro-
funda foram testados a fim de identificar um modelo preciso e de alto desempenho para
a previsão antecipada de ocorrências de raios. No total, foram considerados seis modelos
de aprendizado profundo, incluindo redes neurais de perceptron multicamadas (MLP),
redes neurais convolucionais (CNN), redes neurais recorrentes (RNN) e redes híbridas.
Esses modelos foram otimizados para obter a máxima precisão na previsão. Cada modelo
foi minuciosamente treinado e avaliado e seu desempenho foi avaliado usando métricas
tradicionais para classificação, sendo elas: F1-score, Area Under the Receiver Operating
Characteristic Curve (ROC AUC), Area Under the Precision-Recall Curve (PRC AUC),
precision, recall, specificity e accuracy. O teste de Delong foi usado para avaliar a sig-
nificância estatística e detectar diferenças entre os modelos. O estudo identificou com
sucesso modelos que tiveram um desempenho superior na previsão de casos em que ocor-
reram e que também não ocorreram raios, e esses modelos foram considerados significativa-
mente distintos entre si. Especificamente, o modelo CNN-GRU demonstrou superioridade
em relação aos demais, com boa eficiência computacional. Ademais, foram identificadas
potenciais limitações resultando em recomendações para trabalhos futuros na previsão
de raios usando aprendizado profundo. Com base nos resultados, é possível verificar que
técnicas avançadas de aprendizado profundo podem contribuir significativamente para
previsões de ocorrências de raios com precisão e bom desempenho computacional. Ao
identificar os modelos mais adequados para prever raios, esta pesquisa serve como uma
base para o desenvolvimento de sistemas de alerta mais eficazes, contribuindo para a se-
gurança da sociedade e da indústria, e para a resiliência climática.

Palavras-chave: Deep Learning, Previsão de raios, Redes Neurais Artificiais, Machine
Learning
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Abstract

In the context of climate change and its effects on extreme weather events, the prediction
and monitoring of lightning strikes are crucial, especially in regions prone to such events.
In this context, this study aims to develop and evaluate deep learning models to predict
lightning strikes up to 6 hours in advance, using globally available meteorological data
from the Global Data Assimilation System (GDAS) as input, and lightning occurrence
data provided by the Atmospheric Electricity Group (ELAT) of the National Institute for
Space Research (INPE) as the target. The state of Bahia, Brazil, was selected as a case
study due to its vast region where many electrical projects are being developed, justifying
the study and application of this research to that region. Several deep learning models
were tested to identify an accurate and high-performing model for early prediction of light-
ning occurrences. In total, six deep learning models were considered, including Multilayer
Perceptron (MLP), Convolutional Neural Networks (CNN), Recurrent Neural Networks
(RNN), and hybrid networks. These models were optimized to achieve maximum predic-
tion accuracy. Each model was meticulously trained and evaluated, and its performance
was assessed using traditional classification metrics, including F1-score, Area Under the
Receiver Operating Characteristic Curve (ROC AUC), Area Under the Precision-Recall
Curve (PRC AUC), precision, recall, specificity, and accuracy. The Delong test was used
to evaluate statistical significance and detect differences between the models. The study
successfully identified models that outperformed others in predicting both lightning and
no lightning cases, and these models were found to be significantly distinct from each
other. Specifically, the CNN-GRU model demonstrated superiority compared to the oth-
ers, with good computational efficiency. Additionally, potential limitations were identified,
resulting in recommendations for future work in lightning prediction using deep learning.
Based on the results, it can be concluded that advanced deep learning techniques can
significantly contribute to accurate lightning occurrence predictions with good compu-
tational performance. By identifying the most suitable models for lightning prediction,
this research serves as a foundation for the development of more effective alert systems,
contributing to the safety of society and industry, as well as climate resilience.

Keywords: Deep Learning, Lightning forecast, Artificial Neural Networks, Machine
learning
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Chapter One

Introduction

Lightning is a natural electric discharge sparked by an imbalance of electrical charge,
manifesting in various forms: between a cloud and the ground, within distinct regions of
the same cloud, between separate clouds, or from a cloud to the surrounding air (The
Royal Meteorological Society, 2017). This natural event has a highly destructive ca-
pability, which can cause negative economic and social impacts, interrupting electricity
distribution, causing forest fires, disrupting transportation through airplanes and ships,
damaging telecommunications systems, and causing injuries or even death of humans and
animals.

According to the Federal Aviation Administration (FAA) part of the United States De-
partment of Transportation, severe weather is the leading to the largest cause of air traffic
delay in the National Airspace System, accounting for a total of 75.48%. Thunderstorms
can block busy jet routes, causing flights to reroute into neighboring airspace, which can
become overcrowded. (FAA, 2022)

As a case in point, on August 23, 2023, thunderstorm activity in Porto Alegre area led to
suspended activity in the Salgado Filho airport for 4 hours. The suspension affected more
than 30 flights with 12 aircraft having to wait on the runway to park after landing, 15
planes waited to take off, and nine flights were canceled.(FOSTER; GONÇALVES, 2023)

Therefore, forecast plays a crucial role in ensuring the effective management of traffic flow,
allowing time for pre-departure planning and the filing of amended flight plans. FAA states
that strategic traffic flow managers need to make predictions about convective weather
impacts on airspace capacity 4-8 hours in advance for long-haul flights and 2-6 hours for
shorter flights.(FAA, 2022)

The occurrences of thunderstorms have a greater concentration in tropical regions and
on, or near, landmasses (KAPLAN; LAU, 2021), such as in Brazil, which is one of the
countries most impacted by lightning as it is a vast tropical country.

The Grupo de Eletricidade Atmosférica (ELAT) at Instituto Nacional de Pesquisas Es-
paciais (INPE) estimates that Brazil is struck by lightning 77.8 million times per year,
causing 110 deaths, making Brazil the seventh country with more deaths by lightning,
causing approximately 1 billion dollars worth of economic losses (Instituto Nacional de
Pesquisas Espaciais, 2007; PINTO JUNIOR; PINTO; REGINA, 2021). It is also worth
noting that in Brazil the average number of death by lightning is about 70% higher than
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Chapter One

in the United States. When looking at economic impacts, it is estimated that 70% of the
total shutdown of transmission lines and 40% of the distribution networks in the country
are due to lightning(PINTO JUNIOR; PINTO; REGINA, 2021). Therefore, an accurate
lightning forecasting tool, that could anticipate these events with high accuracy within
hours in advance, can help prevent or mitigate such impacts.

In recent years, the field of lightning forecasting has witnessed notable advancements as
researchers strive to improve the accuracy and lead time of predictions. Existing methods
often rely on localized weather data, which may not capture the full complexity of lightning
occurrence patterns or numerical models that tend to have a high computational cost.
These limitations necessitate the exploration of alternative approaches, such as leveraging
deep learning techniques, to enhance lightning prediction capabilities.

In the unique context of Bahia, Brazil, accurate lightning forecasting plays a crucial role
due to the region’s distinct geographical and meteorological features. With its expansive
coastal areas, diverse landscapes, and unique atmospheric conditions, Bahia experiences
a notable frequency of lightning strikes, especially in the western region Abreu et al.
(2020).To minimize the potential ramifications of these extreme meteorological phenom-
ena, there’s a critical need for developing robust and timely lightning forecasting models
tailored specifically for this region. These models, given the diversity of Bahia’s features,
hold potential for effective application in regions exhibiting similar characteristics, thereby
broadening their realm of impact.

Taking a look back to November 5, 2021, the severity of the issue becomes noticeable:
Bahia recorded the highest number of lightning strikes across all Brazilian states, with
a staggering total of 125,969 strikes. Valença bore the brunt of this weather anomaly,
accounting for 6,269 strikes, followed closely by Maracãs with 3,354 strikes, according
to TV Bahia (2021). This underlines the urgent necessity for tailored lightning forecast
models in effectively safeguarding lives and infrastructure.

In this context, deep learning has emerged as a powerful tool for extracting complex pat-
terns and relationships inherent in large-scale datasets. Its capacity to sift through large
data quantities and identify sophisticated dependencies establishes it as an ideal candidate
for handling meteorological data, thus, enhancing the precision of lightning predictions.
This dissertation seeks to construct and assess various models expressly designed for light-
ning forecasting in Bahia. Through thorough evaluation, the objective of this study is
to pinpoint the most effective deep learning structure that demonstrates superior perfor-
mance and accuracy in predicting lightning occurrences for the Bahia region.

A key strength of this research is the use of globally accessible data sources while de-
veloping a model that can accurately forecast these extreme weather phenomena. This

2



Chapter One 1.1. Overall and Specific Research Goals

strategy enhances the accessibility and usability of such forecasting tools, especially in ar-
eas with limited local data or remote sensing technologies, since it not only broadens the
geographical applicability of the model but also successfully addresses the challenge posed
by the scarcity of local data and remote sensing equipment. The ramifications of these
findings may have a profound influence, potentially revolutionizing disaster preparedness,
risk mitigation strategies, and public safety measures.

1.1 Overall and Specific Research Goals

The overall objective of this dissertation is to develop and evaluate different deep learning
models with distinct architectures to forecast lightning occurrences in the Bahia region up
to 6 hours in advance, utilizing globally available data. The aim is to identify and select
the most suitable model that demonstrates higher performance and accuracy in lightning
prediction, thereby contributing to the advancement of understanding and monitoring
extreme weather events in this specific region.

1.2 Specific Goals

• Analyze globally accessible meteorological and lightning occurrence data, for the
Bahia region as case study.

• Develop six different deep learning models with varying architectures, using tech-
niques such as multilayer neural networks (MLPs), convolutional neural networks
(CNNs), recurrent neural networks (RNNs), and hybrid networks, adjusting hyper-
parameters and optimizing the models to achieve the best prediction results.

• Determine the optimal deep learning model for predicting lightning occurrences in
the Bahia region by validating models with appropriate datasets, evaluating perfor-
mance metrics, and considering predictive accuracy, robustness, and computational
efficiency.

• Perform an assessment of the limitations and potential sources of uncertainty of the
selected models, providing recommendations and insights on possible improvements
and future work related to lightning prediction using deep learning models.

1.3 Structure of the Master’s Dissertation

This document presents 5 chapters organized in the following matter:

3



Chapter One 1.3. Structure of the Master’s Dissertation

• Chapter 1 - Introduction: Presents the research context and outlines the objec-
tives and structure of the dissertation, establishing a foundation for the subsequent
chapters;

• Chapter 2 - Background Theory and Fundamentals: Explores the founda-
tional concepts and theories of deep learning and lightning physics. This chapter
aims to provide a comprehensive understanding of the theoretical underpinnings
necessary for the research;

• Chapter 3 - Methodology: Presents the methodology employed in the research.
This chapter details the approaches, techniques, and data used for developing and
evaluating different deep learning models for lightning prediction in the Bahia re-
gion. It discusses the characteristics of the study area, data preprocessing, and the
selection and design of the models;

• Chapter 4 - Results and Discussion: Reports the results obtained from the
experiments conducted in the research. This chapter presents the findings of the de-
veloped deep learning models, and their performance metrics for the task of lightning
predictions up to 6 hours in advance for the Bahia region. The results are analyzed
and discussed in detail, considering their implications, limitations, and potential
areas for improvement.;

• Chapter 5 - Conclusions: Summarizes the main findings and contributions of the
research, providing a comprehensive conclusion to the dissertation. This chapter also
offers suggestions for future research activities that can further advance the field.

4



Chapter Two

Background Theory and Fundamentals

2.1 Fundamentals of Deep Learning

Over the past few years, the field of artificial intelligence (AI) has grown exponentially,
playing a transformative role in various research areas and industries. AI focuses on
designing intelligent machines capable of executing tasks that typically necessitate human
intelligence. Machine learning, a subset of AI, employs algorithms and statistical models
to empower machines to learn in an automatized form, without explicit programming,
the discovery of rules within the data for solving complex problems (CAI; BILESCHI;
NIELSEN, 2020; GOODFELLOW; BENGIO; COURVILLE, 2016).

One of the most promising branches of machine learning is deep learning, the hierarchy
between those fields is exemplified in Figure 2.1. The deep learning subfield utilizes multi-
ple stacked layers of processing units to learn and recognize patterns from raw data. The
term "deep" in deep learning refers to the numerous hidden layers these networks possess,
enabling them to learn increasingly intricate features and representations (CHOLLET,
2018). Deep learning has achieved outstanding results in diverse applications, such as
computer vision, natural language processing, and speech recognition.

Figure 2.1: Artificial Intelligence, machine learning and deep learning

Source: Modified from Chollet (2018).

There are four learning paradigms that guide the development and application of al-
gorithms: supervised learning, unsupervised learning, reinforcement learning and, semi-
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Chapter Two 2.1. Fundamentals of Deep Learning

supervised learning. These paradigms differ in their approach to data and the objectives
they aim to achieve.

Supervised learning, the paradigm primarily used in this research, is an approach wherein
labeled data, where the input-output pairs are explicitly provided, serves as a guide or
instructor to help the algorithm learn to make predictions or classifications on new, un-
seen data (GOODFELLOW; BENGIO; COURVILLE, 2016). This guidance, allows the
algorithm to understand the desired output for a given input, not through memorization,
but by learning the underlying patterns or relationships. This learning is achieved by it-
eratively adjusting the model’s parameters to improve its performance, ultimately leading
to better generalization when encountering new, unseen data. Supervised learning tasks
are typically divided into two categories: regression and classification problems.

On contrast, unsupervised learning, refers to the absence of a guide or instructor to
provide annotated examples as the target to guide the learning process (GOODFELLOW;
BENGIO; COURVILLE, 2016). Instead, the algorithm explores the data independently
and identifies the underlying structure, relationships, or patterns within it. This self-
guided learning process can be more challenging, as the algorithm has to make sense of
the data without any explicit guidance.

Reinforcement learning, another key paradigm, for that an agent learning how to properly
interact with the environment by receiving rewards or penalties as feedback depending on
its chosen actions (CHOLLET, 2018).

Lastly, semi-supervised learning operates in an intermediate space between supervised
and unsupervised learning. It uses a combination of a small amount of labeled data and
a large amount of unlabeled data for training. For that, unsupervised learning techniques
can be used to identify and comprehend the underlying structure in the input variables.
Meanwhile, supervised learning methodologies can be used to make educated predictions
for the unlabeled data. This predicted data can subsequently be used as additional
training data within the supervised learning algorithm, and this enhanced model can
then be applied to predict outcomes on new unseen data.

While all four paradigms provide unique advantages, this research will focus on the ap-
plication of supervised learning due to its proven ability to provide accurate and reliable
predictions when the target outcomes are well-defined and labeled data is available.

In the following section, the concepts related to machine learning and deep learning are
deeply explored by examining various types of machine learning, such as the difference
between classification and regression problems, and providing a comprehensive analysis
of neural network architectures. The subsection 2.1.2 is dedicated to neural networks
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and covers the training process, different architectures, and crucial hyperparameters. The
subsection 2.1.3 explores the evaluation metrics that were effectively used. This com-
prehensive examination will facilitate a deeper understanding of the model’s design and
potential capabilities to accurately predict lightning strikes, which is a classification prob-
lem that requires an unsupervised deep learning model.

2.1.1 Regression and Classification Problems

Data representation plays a crucial role in machine learning and deep learning, as it
determines how information is processed and utilized by the algorithms. The types of
problems that can be tackled by supervised learning can be separated by the way the
output is represented, whether it is continuous numerical data or a discrete class of labels.
Understanding the nature of the data is essential for addressing different types of problems
effectively.

Continuous numerical data represents values that can assume any value within a specified
range. This type of data is common in regression tasks, where the goal is to predict a
continuous target variable. Examples of continuous numerical data include temperatures,
prices, distances, and various other measurements that can take a continuous range of
values.

Discrete class labels represent categorical data, where each instance belongs to one of
the predefined categories or classes. When classifying data points, the type of classi-
fication problem can vary depending on whether each data point should be assigned
to only one category or can belong to multiple categories. If each data point should
be assigned to only one category, the problem is a single-label, multiclass classification
problem, which involves assigning instances to a single class from several predefined cat-
egories. In contrast, binary classification involves determining between two mutually ex-
clusive categories, while multilabel classification involves assigning instances to multiple
categories(CHOLLET, 2018). Examples of discrete class labels include species of plants,
types of clothing, sentiment labels in text analysis, and other categorical attributes.

It is important to note that machine learning algorithms, including deep learning models,
can only process digital information. Consequently, categorical data often needs to be
converted into numerical representations to be utilized effectively by these models. There
are several techniques available for encoding class labels in a manner that can be easily
understood by deep learning algorithms.

For classification problems, encoding class labels is a critical preprocessing step. By
transforming categorical data into a numerical format, machine learning practitioners can
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ensure that their models can effectively process and learn from the information contained
in the dataset. This, in turn, helps improve the overall performance and reliability of the
models in making accurate predictions and classifications.

Several techniques can be employed to achieve this transformation, depending on the
nature of the data and the problem at hand. One common technique is one-hot encoding,
where each class is represented by a binary vector with a length equal to the number
of classes, with a ’1’ in the position corresponding to the class and ’0’ elsewhere, the
prediction is the probability of that data point to belong to each class(BROWNLEE,
2018). Other methods include ordinal encoding, where each category is assigned a unique
integer value based on its rank, and binary encoding (also called dummy variables), which
converts the integers from ordinal encoding into binary code. The binary encoding follows
the same principle as the one-hot encoding but reduces the size of the vector needed
to represent the data in case of too many classes (BROWNLEE, 2020). By choosing
the appropriate encoding technique, machine learning practitioners can ensure that their
models can effectively process and learn from the categorical data, ultimately improving
their performance and reliability.

2.1.2 Principles of Neural Networks

Artificial neural networks (ANNs) are a type of machine learning algorithm that is mod-
eled after the structure and function of the human brain. ANNs are a powerful tool for
solving complex problems that involve large amounts of data, such as image or speech
recognition. At their core, ANNs are a series of interconnected nodes, or artificial neu-
rons, that process and transmit information. These nodes are arranged in layers, each
responsible for processing a specific type of input data.

ANNs are an abstraction of reality, though, simplifying the complexity of the human brain
and its processes into mathematical functions and algorithms. Therefore, it only takes
inspiration from the brain’s ability to learn and does not attempt to replicate it perfectly.
Additionally, ANNs are limited by the quality and quantity of data used to train them,
as well as the assumptions made during their design.

According to Arbib (1987), the basic premise for constructing an ANN model is that
the neural system’s operation relevant to it is solely mediated through the transmission
of electrical impulses by specialized cells called neurons, simplifying the neural system
into a network of neurons. The nervous system streamlined process is shown in Figure
2.2 with three basic stages. The receptors receive input, which is information from the
human senses. An intricate neural network in which the information that flows through is
processed, resulting in the generation of impulses that control the effectors. The effectors
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are responsible for producing the body’s response to the given stimuli. The process of
transmitting information-bearing signals forward through the system is depicted by the
black arrows in Figure 2.2, where information flows from the receptors to the effectors.
On the other hand, when the flow is in the opposite direction, it indicates the presence of
feedback in the system, which is illustrated by the blue arrows.

Figure 2.2: The nervous system diagram

Source: Modified from Arbib (1987).

The neuron is the fundamental unit for this process and is made up of dendrites, axons,
and a cell body, as in the schematic drawing in Figure 2.3. The dendrites receive input
from other neurons in the form of neurotransmitters, which are chemical signals that bind
to specific receptors on the dendritic spines. The axon is a long, slender projection of
the neuron that carries the electrical signals, away from the cell body towards the axon
terminals. At the axon terminals, the electrical signal is converted back into a chemical
signal through the release of neurotransmitters, which bind to receptors on the dendrites
of other neurons, and the process repeats (HAYKIN, 2009).

Figure 2.3: Biological Neuron

Source: Arbib (1987).

A neuron’s firing is dependent on the summation of signals received from other neurons
through its dendrites, called a period of latent summation. These signals can either
excite or inhibit the neuron from firing an impulse. For a neuron to fire, the excitatory
signals must exceed the inhibitory signals by a critical threshold. To model this behavior,
weights positive can be assigned to excitatory synapses and negative weights to inhibitory
synapses. The total weighted sum of inputs is then compared to the threshold, and if it
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exceeds the threshold, the neuron fires an action potential along its axon (ARBIB, 1987).

Analogously, an artificial neuron, also referred to as a perceptron, is a pivotal information-
processing unit in a neural network. The block diagram of a neuron model, as shown in
Figure 2.4, serves as the cornerstone for designing a diverse range of neural networks with
varying functionalities.

Figure 2.4: Perceptron

Source: Developed by the author.

In biological systems, neurons receive input from other neurons via dendrites, process
information in the cell body, and transmit electrical signals through axons. Similarly,
in ANNs, perceptrons receive input from other perceptrons and process the information.
Both biological neural networks and ANNs comprise interconnected neurons, with infor-
mation flowing from input (receptors) to output (effectors) layers. Feedback mechanisms
exist in both systems, as represented in Figure 2.2, though their specific mechanisms in
ANNs are purely mathematical.

Neural networks learn by adjusting the weights and biases of the connections between
neurons. The learning process typically involves two main phases: forward propagation
and backpropagation. During forward propagation, the input data is passed through the
network, and the activations of neurons are computed layer by layer. The output layer’s
activations represent the model’s predictions. In the backpropagation phase, the error
between the predictions and the actual target values is used to update the weights and
biases in the network to minimize a loss function.

The connections between the neurons have a corresponding weight associated. The
weights are numerical values that are used to scale the input values from the previ-
ous layer before they are passed on to the subsequent layer. When data are introduced
to the model, the input values are multiplied by their corresponding weights, and the
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products are then summed at each neuron in the first hidden layer. This weighted sum
is along with a bias term and passed through an activation function, which introduces
non-linearity into the model. This process happens inside each neuron of the network and
is schematically represented in Figure 2.4. The output of the activation function for each
neuron in the first hidden layer is then used as input for the neurons in the subsequent
layer, and the process is repeated until the output layer is reached (HAYKIN, 2009).

The final output prediction is then compared to the corresponding true label for the
example, and the derivative of the loss function with respect to the predicted output
is computed. The loss function serves as a measure of how well the neural network’s
predictions match the actual target values. Specifically, it quantifies the difference between
the predicted output and the true output for a given input. The ultimate goal of the
training process is to minimize this loss function to achieve high accuracy in predicting
new, unseen data.

Backpropagation is the fundamental algorithm for training neural networks to minimize
the loss function. To elaborate, backpropagation operates through computing the gradient
(partial derivatives) of the loss function concerning each weight and bias in the network.
This process starts from the output layer and moves backward through the network,
updating the weights along the way. The chain rule of calculus is applied to efficiently
calculate the gradients. These updates are made by subtracting a fraction of the computed
gradients from the current weights and biases.(GOODFELLOW; BENGIO; COURVILLE,
2016) By iteratively adjusting the weights and biases using the computed gradients, the
neural network can learn the underlying patterns in the data and improve its performance
on the given task.

2.1.2.1 Understanding Key Hyperparameters

When training neural networks, there are several crucial hyperparameters that can be
adjusted to optimize the model’s performance. These hyperparameters include the num-
ber of layers and neurons, batch size, epochs, learning rate, among others, and they play
a significant role in how the model learns from the training data. The ultimate goal is
to uncover the underlying patterns in the data and make accurate predictions on unseen
data. Thus, carefully tuning these hyperparameters is essential to building effective neural
networks.

Batch size refers to the number of training examples used in a single update of the
neural network’s weights and biases. Brownlee (2018) tested different batch sizes for a
classification problem and found that small batch sizes tend to lead to rapid learning,
but also result in a volatile learning process with higher variance in the classification
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accuracy. On the other hand, larger batch sizes slow down the learning process in terms
of the learning curves. However, the final stages of training typically result in convergence
to a more stable model with a lower variance in classification accuracy. Concluding that,
although the optimal batch size depends on the specific problem and available data, it
has a significant impact on the speed and stability of the learning process, making it an
important hyperparameter to tune.

The learning rate determines the extent to which weights are modified at each epoch.
When training a neural network using backpropagation, the amount of error attributed
to each weight in the network is estimated. The weight is then updated using a fraction
of the estimated error, which is determined by a hyperparameter known as the learning
rate. For instance, a learning rate of 0.1, which is a common default value, means that
weights in the network are updated by 10% of the estimated weight error each time the
weights are updated (BROWNLEE, 2018). If the learning rate is too large, the model
may not converge to the correct answer, but if it is too small, it could require significant
computational resources.

Epochs refer to a single pass through the entire training dataset during the training
process. During each epoch, the neural network processes all the batches and updates its
weights and biases accordingly (EKMAN, 2021). Typically, the training process involves
multiple epochs to ensure that the model has seen the training data multiple times and
has had a chance to learn the underlying patterns. The optimal number of epochs depends
on the problem and dataset and is often determined through experimentation or by using
techniques such as early stopping to prevent overfitting.

As previously discussed, the activation function plays a crucial role in determining the
final output of a neuron, or of another neuron that it is connected to, by applying a
weighted sum of its inputs. The behavior of the network and the characteristics of its
output are therefore heavily influenced by the activation function that is used. Figure
2.5 provides a graphical representation and the corresponding mathematical functions for
some commonly used activation functions.

As depicted in the figure, each activation function has unique behavior and range. For
example, in the step function, the output is limited to either 0 or 1. This can be too
restrictive for other applications, hindering the network’s ability to learn effectively. Fur-
thermore, since it returns a fixed value based on a specific threshold, its derivative is
almost always zero, rendering it unsuitable for use in backpropagation, which relies on
the calculation of derivatives to optimize the neural network.

On the other hand, the sigmoid function can produce continuous outputs within the same
range, allowing for more flexibility in learning. Alternatively, hyperbolic tangent (TanH)
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Figure 2.5: Graphical and Mathematical Representation of Commonly Used Activation Functions

Source: Modified from Ronaghan (2018).

function has the same shape as the sigmoid but ranges from -1 to 1, allowing for negative
numbers as well. This can be advantageous in some cases, such as when the input data
has negative values.

The softmax function is commonly used for multiclass classification problems, unlike the
sigmoid function, which is often used in the output layer for binary classification problems.
However, the dimension of the softmax function graph cannot be easily determined, since
it depends on the number of classes in the problem. The softmax function, defined in
equation 2.1, where zi is the input value for the i-th element of the vector, and the function
returns the probability of the input belonging to the i-th class. The denominator of the
equation ensures that the sum of all probabilities for all classes is equal to 1 (RONAGHAN,
2018).

Softmax(zi) =
ezi

k∑
j=1

ezj
(2.1)

The linear activation function is a basic function that has its own limitations. It simply
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returns the input value, which can lead to problems with gradient calculation during
backpropagation. The gradient for a linear function is constant, which means that the
same weight and bias updates are applied to all input values, regardless of their value,
making it difficult for the neural network to effectively learn and capture complex patterns
from the data (SZANDAŁA, 2021). However, there are alternative activation functions
that can address these limitations.

One popular alternative is the Rectified Linear Unit (ReLU), which is both simple and
effective. ReLU returns the input value if it is positive and zero otherwise. By introducing
non-linearity, ReLU allows for more complex patterns to be learned, and the gradient is
not constant, allowing for more effective backpropagation. As a result, ReLU is often
the preferred activation function in deep learning models. However, in some cases during
training, if the weights of a network are initialized in a way that causes numerous neurons
to output negative values, those neurons can become "stuck" in a state where they always
output zero, regardless of their input, and since the ReLU does not support numbers under
zero this prevents from learning (SZANDAŁA, 2021).

As a response, Leaky ReLU is a variant of ReLU that allows a small gradient when
the input is negative, which can help to overcome the "dying ReLU" problem. These
activation functions can improve the performance of a neural network and allow for more
complex representations of the input data.

Another variation, intended to prevent the issue with the ReLU where the negative region
is not activated, is the Scaled Exponential Linear Unit (SELU) activation function. This
makes SELU distinct, as it has active functionality in both positive and negative regions
(KILIÇARSLAN; ADEM; ÇELIK, 2021).

Activation functions play a crucial role in the performance of deep neural networks, and
selecting the appropriate function for a particular task can have a significant impact on
the network’s success. Table 2.1, incremented upon the work of Szandała (2021), provides
a comprehensive overview of the recommended use of various activation functions in deep
neural networks.

Additionally, to establish a resilient model, it is crucial to avoid evaluating the model
with the same data utilized during training. Doing so would introduce an unjust bias
in the outcomes, as the model has already encountered the same input and its ability
to extrapolate to unfamiliar data would remain unchallenged (CHOLLET, 2018). Con-
sequently, data is typically segregated into three separate sets: training, validation, and
testing. The training set is used for the actual learning process, during which the neural
network adjusts its weights and biases based on the patterns in the data. The validation
set is used to evaluate the model’s accuracy on previously unseen data after each training
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Table 2.1: Activation Function Overview
Function Comment When to use?
Step Does not work with backpropagation algo-

rithm
Rather never

Linear Constant gradient; Disregard input value
during weight and bias update

Output for regression prob-
lems

Sigmoid Prone to the vanishing gradient function
and high fluctuations during training due
to not being zero centered

Can fit into Boolean gates
simulation

TanH Also prone to vanishing gradient In recurrent neural network
ReLU The most popular function for the hid-

den layer. Although, under rare circum-
stances, prone to the “dying ReLU” prob-
lem

First to go choice

Leaky ReLU Comes with all pros of ReLU, but due to
not-zero output will never “die”

Use only if “dying ReLU”
problem is expected

SeLU Self-normalizing property; Effective in en-
vironments where keeping the mean and
variance of the outputs constant over time
is beneficial

Preferred where it can help
maintain stable activations
mitigating the vanishing gra-
dient problem; When deal-
ing with negative inputs (KIL-
IÇARSLAN; ADEM; ÇELIK,
2021)

Maxout More advanced activation function than
ReLU, immune to “dying,” but high com-
putation cost

Use as last resort

Softplus Similar to ReLU, but a bit smoother near
0. Comes with comparable benefits as
ReLU, but has a more complex formula,
therefore network will be slower

Rather never

Swish Same as leaky ReLU, and does not outper-
form it. Might be more useful in networks
with great dept

Worth trying in very deep net-
works

Softmax For output layer in classifica-
tion networks

Openmax For output layer in classifica-
tion with open classes possi-
bility

Source: Modified from Szandała (2021).
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epoch. This helps to monitor the model’s performance. Lastly, the test set provides a
final evaluation of the model’s performance, assessing its ability to generalize and make
accurate predictions on entirely new data.

Through meticulous hyperparameter tuning and monitoring of the model’s performance
on the validation set, it is possible to train a neural network that can effectively learn
patterns in the data and generalize for new, unseen examples. This iterative process of
training, validation, and testing helps to ensure that the model is not merely memorizing
the training data but is genuinely capable of making accurate predictions beyond the
known data.

The loss function is a fundamental hyperparameter of neural networks and is used to eval-
uate the performance of AI models. The selection of a loss function is closely related to the
activation function employed in the output layer of a neural network, as specific functions
cater to different types of problems. For instance, there are tailored functions for regres-
sion problems, binary classification, and multi-class classification problems (BROWNLEE,
2018). Table 2.2, which is based on Cai, Bileschi e Nielsen (2020), provides an overview
of some of the loss functions that for its correspondent machine-learning task. Also, it’s
useful to consider that a function that penalizes high errors heavily may cause the network
to struggle to reach the desired minimum values and be very sensitive to outliers, while
a function with low penalties may generate a model that does not learn sufficiently well
during the training process. This must be adjusted according to the needs of the problem.
Additionally, it is possible to add a regularization term to the loss function responsible
for preventing large weights from being assigned to the network, another way to avoid
overfitting.

Table 2.2: Machine-Learning Tasks, Last-Layer Activation Function, and Loss Function Overview

Type of task Activation
of the out-
put layer

Loss function

Regression Linear,
ReLU,
TanH

Mean Squared Error
(MSE), Mean Absolute
Error (MAE), Mean Ab-
solute Percentage Error
(MAPE), Huber Loss

Classification
Binary clas-
sification

Sigmoid Binary Cross Entropy,
Hinge, Squared Hinge

Single-label,
Multiclass
classifica-
tion

Softmax Categorical Cross Entropy,
Sparse Categorical Cross
Entropy, Kullback-Leibler
Divergence

A model with high accuracy will learn from known examples and generalize from those
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known examples to new examples in the future. A model that did not learn enough
is said to have underfitted, and it will perform poorly on training data as well as in
the validation. To address underfitting, the complexity of the model can be increased,
improving its capacity to fit a variety of functions. Increasing the capacity of a model can
be achieved by changing its structure, such as adding more layers and/or more nodes to
layers. In contrast, overfitting is more commonly encountered, as it occurs when a model
learns the training data too well, including the noise and irrelevant patterns, losing its
ability to generalize with unseen data. (BROWNLEE, 2018)

Diagnosing an overfit model can be done by monitoring its performance of the loss function
through the epochs during training on both the training dataset and a validation dataset.
A typical pattern for overfitting models is that the training performance continues to
improve, while the validation performance plateaus or starts to degrade as shown in Figure
2.6 panel B. In such cases, techniques like regularization, early stopping, or reducing the
model’s complexity can be employed to mitigate overfitting and improve the model’s
ability to generalize to new data (BROWNLEE, 2018).

Figure 2.6: Example of Training Learning Curve for Three Simplified Cases: Underfitting (panel
A), Overfitting (panel B), and Just-Right Fitting (panel C).

Source: Modified from (BROWNLEE, 2018)

2.1.2.2 Architectures

Neural networks, a highly adaptable and powerful class of machine learning models, are
suitable for a wide range of tasks, from image recognition to natural language processing
and beyond. The flexibility of neural networks lies in their ability to accommodate a
variety of architectural designs, which can be tailored to specific tasks and data types.
This adaptability is crucial for achieving optimal performance in diverse machine-learning
applications. These architectural configurations encompass the number of layers, layer
types, neuron count per layer, interconnections between layers, and the activation func-
tions employed in each layer. This myriad of neural network architectures enables the
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customization of neural networks to cater to various tasks and data types, substantially
influencing the network’s overall performance. Consequently, selecting the appropriate
neural network architecture is a crucial consideration in the design and execution of a
high-performing machine learning model.

This discussion will delve into a selection of prominent neural network architectures,
including multi-layer perceptrons (MLPs), convolutional neural networks (CNNs), long
short-term memory (LSTM) networks, gated recurrent units (GRUs), and hybrid archi-
tectures such as CNN-LSTM and CNN-GRU.

Each architecture has specific strengths and weaknesses, making them suitable for different
tasks and data types. By understanding the fundamental principles behind these archi-
tectures and their applications, practitioners can make informed decisions when designing
and implementing high-performing machine learning models. As the field of artificial
intelligence continues to evolve, the development of new and improved neural network ar-
chitectures will undoubtedly play a crucial role in advancing our ability to solve complex
problems and enhance various aspects of our lives.

MLPs are a fundamental type of neural network architecture, composed of multiple fully
connected layers where all neurons in adjacent layers are interconnected, earning the
name of a fully connected network (EKMAN, 2021). The information flow in MLPs is
unidirectional, moving from input to output without any loops or recurrent connections,
classifying them as feedforward networks (AGGARWAL, 2018). Often regarded as the
foundation for more complex neural network architectures, MLPs serve as an essential
building block in the field of artificial intelligence.

Through successfully addressing the limitations of single-layer networks, the MLP emerges
as an innovative and impactful neural network architecture. It achieves this by incorporat-
ing nonlinear activation functions, hidden layers, and high connectivity between neurons.
To be considered an MLP the network has to be composed of at least three fundamental
layers: the input layer, a hidden layer, and an output layer. Figure 2.7 demonstrates an
example of a structure for an MLP with two hidden layers. The hidden layers are made
up of the same perceptrons as the input and output layers, with as few or as many layers
as needed to compose the network’s depth. Despite their importance, those layers can-
not be directly accessed by the programmer, since they are located in the middle of the
network, serving only as part of the processing units and not generating the final output.
As a result, they are referred to as "hidden" (GOODFELLOW; BENGIO; COURVILLE,
2016).

The neural network processes function signals, which are input signals that propagate
through the network and produce output signals. Conversely, error signals originate from
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Figure 2.7: Multi-layer Perceptron Architecture with Two Hidden Layers

Source: Haykin (2009).

the output layer and propagate backward through the network layer by layer for error
correction. To compute the function signal, each neuron in the network applies the input
signal and associated weights, then performs a nonlinear function. Moreover, each neuron
estimates the gradient vector, which is used for error correction during the backward pass
through the network. Each neuron in the hidden or output layers performs both the
computation of the function signal and the estimation of the gradient vector (HAYKIN,
2009).

Despite its effectiveness, the fully connected network has some limitations that should be
considered. One of the drawbacks is that it provides limited information to the network
at a time, making it difficult to work with time-series predictions that involve seasonal
trends, as they cannot be learned with just one historical data point (EKMAN, 2021).
Additionally, the network still does not have access to all historical data unless the input
layer is infinitely wide, which is not practical. This limitation means that the network
may not be able to capture all the temporal dependencies in the data, which can lead to
suboptimal performance when working with time-series forecasting.

However, recurrent neural networks (RNNs) and CNNs are able to overcome this lim-
itation, as they are commonly employed as they are able to process sequential data of
varying lengths. RNNs, in particular, are well-suited for time-series forecasting due to
their ability to capture temporal dependencies in the data. These models can utilize both
current and past, time steps of a variable to provide more accurate predictions (GOOD-
FELLOW; BENGIO; COURVILLE, 2016). To utilize these models effectively, the data
must be pre-processed to incorporate the notion of time, by defining a lookback window,
as represented in Figure 2.8. This creates a new dimension in the data that indicates
how many steps in the past the network should consider while analyzing each data point,
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providing a contextual frame of reference for the input data. By doing so, the network
can learn meaningful patterns for prediction based on a historical analysis of the data.

Figure 2.8: Three-Dimensional Data: Lookback Window Representation

Source: Developed by the author.

RNNs are designed to handle sequential data that have a temporal relationship. Unlike
feedforward neural networks, the input vector for a recurrent layer needs to include both
the current input and the previous output. That means that the RNNs have loops in
their structure that allow information to persist and are able to take into account past
information when processing new inputs. This makes RNNs particularly useful for tasks
in which the sequence of the data is relevant, such as natural language processing, and
speech recognition, where the meaning of a particular word or sound is often dependent
on the preceding words or sounds.

In those networks, the hidden neurons serve as the network’s internal state. By using
feedback loops to connect the output of the hidden layer back to the input layer via unit-
time delays, the network can maintain a memory of past inputs and process sequences
of data. The input layer of an RNN consists of feedback nodes and source nodes that
are concatenated together. Feedback nodes receive the output of the hidden layer from
the previous time step, while source nodes receive input from the external environment.
The number of unit-time delays in the feedback loop determines the order of the model.
This dictates the number of time steps that the network can remember and use to inform
its processing of new input. A higher-order model can capture longer-term dependencies
in the data, but at the cost of increased computation and a greater risk of overfitting
(HAYKIN, 2009).

RNNs can be trained using backpropagation through time (BPTT), which involves un-
rolling the network and backpropagating the error through the network in the same way as
for a feedforward network. However, since RNNs have recurrent connections, weight shar-
ing needs to be taken into account when updating the weights (EKMAN, 2021). However,
this introduces both the vanishing gradients problem and the exploding gradient problem.
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If the recurrent weight is smaller than 1, it will be multiplied by itself many times, resulting
in a value that approaches 0. This causes the gradients used in backpropagation to become
very small, making it difficult to update the weights in earlier layers and leading to the
vanishing gradient problem. Conversely, if the recurrent weight is larger than 1, it will be
multiplied by itself many times, resulting in a value that approaches infinity. This causes
the gradients to become very large, leading to the exploding gradient problem.

Although deep networks with too many layers are prone to vanishing gradients, in the case
of RNNs, weight sharing across time steps can compound the problem. This is because
the impact of certain inputs on the output layer is not limited to the neurons directly
below it, but rather extends to all the neurons from previous time steps, leading to a
further weakening of gradients.

Various modifications have been proposed to address these issues, including using different
activation functions that avoid saturation, regularization techniques to prevent overfitting,
and specialized RNN architectures such as LSTM networks and GRUs. These innovative
architectures were designed to overcome the vanishing gradients problem and have proven
to be effective in many applications.

LSTMs are highly popular recurrent neural networks that differ from other types of net-
works in the way they update the states in the hidden layer and propagate information
over time. These networks have different memory mechanisms that allow the recurrent
neurons to better retain information over longer periods, preventing the loss of informa-
tion during processing (CHOLLET, 2018). The LSTM network is designed to interact
with the memory cells via the gates, which allow for the formulation of output using the
state from previous activations of the neuron.

There are three types of gates that help to govern the flow of information within the
cell in an LSTM network: the forget gate, input gate, and output gate. The forget
gate determines what information should be discarded from the cell, while the input
gate decides which values from the input should be used to update the memory state.
The output gate determines what should be outputted based on both the input and the
memory of the cell. These gates are weighted functions that allow the LSTM network
to selectively remember or forget information, which is critical for handling long-term
dependencies in sequential data (BROWNLEE, 2017). These gates, together with the
constant error carousel (CEC), keep each cell stable and allow for bridging long-time lags.
The internal architecture of each memory cell guarantees a constant error flow within the
CEC.

This is achieved by using a neuron that implements a neuron with the derivative of the
activation function as 1, a recurrent weight of 1, and a loop that is formed through time.
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The ramifications of the output of this neuron passing through this series of gates is that
the network’s ability to propagate gradients through time is maintained, preventing the
vanishing or exploding gradient problem(EKMAN, 2021).

The cells in GRU networks are simplified versions of LSTM cells, and like LSTMs, they
have a memory mechanism but with much fewer parameters. GRU networks are com-
monly applied in problems with few parameters, where processing speed is more important
(CHOLLET, 2018). In particular, GRUs have only two gates, a reset gate, and an update
gate, which control the flow of information into and out of the cell.

The reset gate in a GRU network determines how much of the previous hidden state should
be carried over or forgotten. This allows for a partial copy of the hidden state from the
previous layer, making gradient flow more stable during backpropagation. The update
gate in a GRU combines the roles of both the input and forget gates in an LSTM, enabling
the network to selectively decide how much of the previous hidden state to retain and how
much to update with the new input at each time step (AGGARWAL, 2018). Although the
GRU is generally simpler and more computationally efficient, the LSTM is often viewed
as a safer option for processing longer sequences and larger datasets due to its explicit
internal memory and greater control over updates through the use of separate gates.

After exploring the benefits and limitations of recurrent networks, it’s worth considering
another powerful model in deep learning, the convolutional neural network. It is worth
noting that CNNs have also become a popular choice in the field of deep learning. Unlike
GRUs and LSTMs, CNNs are commonly used for processing images, but they have also
been successfully applied in other domains, including time series forecast. CNNs use a
convolutional structure to capture complex patterns and relationships in the input data,
and they are highly effective in scenarios where local spatial or temporal relationships
between input data points are important.

In CNNs, filters or kernels are applied to the input data to obtain a set of feature maps that
are then passed through non-linear activation functions. These filters allow the network
to efficiently extract relevant features from the input data, while the pooling layers help
in reducing the dimensionality of the feature maps that will pass through subsequent
layers.The convolutional operation in a CNN involves computing the dot product between
the filter weights and a spatial region in the previous layer to determine the hidden state
in the next layer(AGGARWAL, 2018).

This network was originally designed for processing and classifying image data, which
naturally have three dimensions - height, width, and color channels (or feature maps),
excluding the batch size dimension. However, with the rise of time-series data analysis,
a modified version of CNNs called Conv1D was developed to handle sequential data.
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Time-series data only has two dimensions - the lookback window and the features - which
makes it incompatible with traditional CNNs. Conv1D, on the other hand, is specifically
designed to operate on sequential data by performing 1D convolutions across the time
dimension, allowing it to learn and extract patterns and features from sequential data.
So while CNNs were originally developed for image processing, Conv1D was developed
to address the unique challenges of sequential data analysis(CHOLLET, 2018). Figure
2.9 shows how the convolution operation works with time series sequential data, where a
kernel slides through the patches of data with size 5 and outputs the dot product between
it and the weights in the kernel.

Figure 2.9: Convolution Operation on Time Series Sequential Data

Source: Chollet (2018).

The kernel size determines the size of the window that will slide over the input data,
while the stride determines the distance that the filter will move after each convolution
operation. When a stride of 2 is used, for example, the filter moves two units at a time
horizontally and vertically across the input image. This results in the downsampling of
the feature map by a factor of 2 in both dimensions. Padding is a technique used to
enable the convolution operation to be applied to the edges of the feature map as well
as the central regions. It involves adding an appropriate number of rows and columns of
zeros around the edges of the input feature map. The purpose of this is to prevent the
output feature map from shrinking and to ensure that the convolution operation can be
applied to the entire input. By adding padding, the output feature map will have the
same spatial dimensions as the input feature map.(CHOLLET, 2018)

While 1D CNNs are effective at capturing local temporal patterns, they can be less sen-
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sitive to long-range dependencies in time series data, such as seasonal trends in meteo-
rological data, unlike the RNNs that are designed to handle that type of sequential data
(CHOLLET, 2018). This is due to the fact that they process input patches indepen-
dently and are limited by the size of the convolution windows. Hybrid models, such as
CNN-LSTM and CNN-GRU, address this issue by combining convolutional and recur-
rent networks and have shown great promise in handling time-series data due to their
ability to capture both spatial and temporal dependencies within the data. This is also
particularly useful for handling multivariate data, which recurrent networks traditionally
struggle with.

The model first applies a convolutional layer to the input data, which applies filters to
the input data to extract relevant features. Each filter is a small matrix of weights that
convolves over the input data, producing an output feature map. The output feature map
contains feature maps for each filter and summarizes the input data’s most important
features.

Next, a pooling layer is applied after the convolutional layer, which reduces the spatial
dimensions of the feature maps while retaining the most important information. The
pooling layer outputs a feature map that has reduced spatial dimensions and preserves
the most important information and is done by extracting windows from the input feature
maps and outputting the max value of each channel. The max-pooling uses the max value
of each channel, and it is preferred over other downsampling methods, such as strided
convolutions and average pooling, as it tends to lead to results(CHOLLET, 2018).

The output of the pooling layer is then fed into a recurrent layer, such as an LSTM or
GRU layer. The RNN layer takes the pooled feature maps as input and applies the RNN
operation to model the temporal dependencies in the input data. Finally, one or more
dense layers can be added to the model to perform classification or regression tasks on
the RNN layer’s output.

2.1.3 Evaluation metrics for deep learning classification models

This study aims to provide a binary forecast for future lightning events by predicting the
presence or absence of lightning in the next six hours. To ensure a proper evaluation of
the deep learning classifier model, multiple evaluation metrics need to be analyzed.

A confusion matrix is an essential tool for evaluating the performance of a classification
model as it provides a clear visual representation of the quantities and proportions of
predictions classified correctly, and incorrectly classified. The matrix has two axes, with
the true labels of the values the model is using as targets on the y-axis and the predicted
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values on the x-axis. The diagonal of the matrix represents the values that were classified
correctly. True positives (TP) represent the correctly classified positive class values, while
true negatives (TN) represent the correctly classified negative class values. False negatives
(FN) occur when a data point that should have been classified in the positive class is
wrongly classified in the negative class, and false positives (FP) occur when a data point
that should have been classified in the negative class is wrongly classified in the positive
class. Figure 2.10 shows the confusion matrix for a binary classification problem, but
the same logic can be applied to construct a confusion matrix for a multiclassification
problem.

Figure 2.10: General Confusion Matrix

Source: Developed by the author.

One commonly used metric is accuracy, as defined in Equation 2.2, which measures the
proportion of correct predictions made by a model over the total number of predictions.
While accuracy is easy to understand and interpret, it may not be suitable for all scenarios,
especially when the classes are imbalanced or when the cost of false positives or false
negatives is high. (EKMAN, 2021)

Accuracy =
TP + TN

TP + TN + FP + FN
(2.2)

Precision (equation 2.3) is the fraction of TP out of all predicted positives. In other words,
precision measures the proportion of instances that were correctly classified as positive
among all instances that were predicted as positive by the classifier. High precision
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indicates that the classifier has a low false positive rate, meaning that the instances
classified as positive are highly likely to be truly positive. However, high precision does
not necessarily imply high recall (equation 2.4), which measures the fraction of TP among
all actual positive instances. Both have to be taken into consideration, since, the choice of
which metric to prioritize depends on the specific application requirements. For example,
for lightning occurrences, high recall may be more important than high precision because
it is crucial to identify all positive cases even if it means some false positives may be
included. For that reason, the F1-score 2.5) makes a valuable metric, since it takes into
account both precision and recall, providing a balanced measure of the model’s ability to
correctly identify positive samples while minimizing FP and FN.

Precision =
TP

TP + FP
(2.3)

Recall =
TP

TP + FN
(2.4)

F1-Score =
2 · ( Precision · Recall )

Precision + Recall
(2.5)

Specificity, is the equivalent of the precision for the negative class, measuring the pro-
portion of TN out of all the actual negatives, as the equation 2.6 shows. Therefore,
specificity tells us how well the model can correctly identify negative cases in relation to
all the negative cases present.

Specificity =
TN

TN + FP
(2.6)

The Receiver Operating Characteristic Area Under the Curve(ROC AUC) provides a
single number that reflects the overall ranking performance of the model. The ROC curve
is a graphical representation of the trade-off between the true positive rate (recall) and
the false positive rate (equation 2.7) at various classification thresholds. The ROC AUC
is a measure of the model’s ability to distinguish between positive and negative classes.
A perfect classifier has a ROC AUC score of 1, while a random classifier has an AUC
score of 0.5. The ROC AUC is a robust metric that is insensitive to class imbalance,
making it useful for evaluating the performance of models in real-world scenarios. ROC
AUC metric is equal to the likelihood that a negative example chosen randomly will have
a lower probability estimate of belonging to the positive class compared to a positive
example chosen randomly. (HUANG; LING, 2005)
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False Positive Rate =
FP

TN + FP
(2.7)

The Precision-Recall Curve (PRC) is obtained by plotting the precision against the recall
for various threshold values. As previously stated, ideally, a good classifier should achieve
high precision and high recall simultaneously, but these two metrics are typically in tension
with each other. Therefore, the PRC curve provides a visual representation of the trade-
off between precision and recall, and the AUC of the PRC curve measures the overall
quality of the classifier. (VUJOVI’c, 2021)

The area under the curve can be calculated by using the trapezoidal rule, which involves
approximating the area under the curve as a series of trapezoids. This method involves
calculating the PRC AUC for each segment of the curve between two adjacent points,
using the trapezoidal rule, and then summing the areas of these segments to obtain an
estimate of the AUC for the entire curve. Miao e Zhu (2021) defines the equation as seen
in equation 2.8, where f is the function of FPR and t is of TPR, and the trajectory is
partitioned into n− 1 sections.

PRCAUCtrapezoid =
1

2

n∑
i=1

(f1+i − fi) · (ti+1 + ti) (2.8)

To calculate the AUC for a ROC curve, the trapezoidal rule involves dividing the curve
into a set of vertical strips of equal width and summing the areas of the trapezoids formed
by each strip. The AUC can then be calculated as the sum of these areas. This metric
will be better discussed in the next subsection 2.1.4.

2.1.4 DeLong’s test

DeLong’s test is a statistical method proposed by DeLong, DeLong e Clarke-Pearson
(1988) used for comparing the areas under two or more correlated ROC curves. This can
be used in many fields, but it’s frequently used in medical statistics where ROC curves
are a common tool to visualize and analyze the performance of diagnostic tests but can
also be used to compare machine learning model performance, such as in the works of
Furtado et al. (2022), Guliyev e Mustafayev (2022), and Rahman et al. (2021).

Furtado et al. (2022) the Delong’s test was used to compare a deep learning algorithms
that support the detection of pneumonia caused by COVID-19 in chest radiographs with
a well-known public solution. Guliyev e Mustafayev (2022) applied to compare machine
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learning models trained to predicted West Texas Intermediate (WTI) oil price dynamics.
Rahman et al. (2021) used both Wilcoxon’s signed ranked test and and DeLong’s test
to compare five machine learning models and three deep learning architectures created
to classify a driver’s cognitive load. This cognitive load represents mental effort and
workload experienced by a person while driving and it is a variable that correlates with
the disposition of road accidents.

The DeLong test offers a way to statistically compare the performance of two models or
tests based on their ROC curves, taking into account the correlation between them. This
is important because the AUC is a summary measure of the ROC curve, which represents
the probability that a randomly chosen positive instance is ranked higher than a randomly
chosen negative instance.

DeLong’s method for comparing the AUCs of two correlated classifiers has several steps
and involves the computation of a covariance matrix and a z-score statistic.

DeLong, DeLong e Clarke-Pearson (1988) stated that Receiver Operating Characteristic
(ROC) curve, when computed using the trapezoidal rule, is equivalent to the Mann-
Whitney two-sample statistic applied to the two sample sets Xi and Yj. Thus, the AUC
can be computed as the equation 2.9.

AUCempirical =Mann−Whitneystatistic = θ̂ =
1

mn

m∑
i=1

n∑
j=1

ψ(Xi, Yj) (2.9)

In this context, m represents the number of positive instances and n represents the number
of negative instances. The sets Xi and Yj correspond to the predicted probabilities for
the positive and negative classes, respectively. In adition, the equation 2.9 adhere to
the constraints imposed by the ψ function, also known as the Heaviside step function
(equation 2.10).

ψ(Xi, Yj) =


1 if Y < X

1
2

if Y = X

0 if Y > X

(2.10)

The logic behind this is that it has a positive impact on the AUC value when the probabil-
ity of making accurate predictions is higher. In another words, when Y < X, this means
that the predicted occurrence probability of a no lightning event is less than the pre-
dicted occurrence probability of a lightning event. This is desirable because no lightning
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instances should have a lower predicted occurrence risk than actual lightning instances.
Therefore, the model is rewarded for its accurate prediction, which contributes positively
to the model’s AUC with a value of +1/mn (DRAELOS, 2020).

When Y = X, this means that the predicted occurrence probability of a no lightning
event is equal to the predicted occurrence probability of a lightning event. In this case,
the contribution to the model’s AUC is (+1/2)/mn. In the worst case scenario where Y >
X, it signifies that the predicted occurrence probability of a no lightning event is greater
than the predicted occurrence probability of a lightning event. No contribution is added
to the model’s AUC (+0) (DRAELOS, 2020).

Consequently, when considering the probabilities (Pr), it is important to note that accord-
ing to the Heaviside function, the weight assigned to Pr(X = Y ) is zero. Therefore, when
calculating the mean of the AUCs, the following approach is employed of the equation
2.11.

AUCmean = θ =
1

mn

m∑
i=1

n∑
j=1

Pr(X > Y ) + 0.5× Pr(X = Y ) (2.11)

The next step involves computing the DeLong covariance, which takes into account the
correlation between the two classifiers. The construction of this covariance matrix is
carried out as follows:

S =
Sx

m
+
Sy

n
(2.12)

Where Sx and Sy are these covariance matrixes computed based on the ranking of the
predictions, Sx is used for the positive examples and Sy for the negative examples.

After calculating the AUCs and their covariance, a test statistic (denoted as z) can be
computed. This statistic measures the standard deviations difference between the AUCs,
normalized by their covariance. It’s given by:

z =
(AUCA − AUCB)

sqrt(var(AUCA) + var(AUCB)− 2 ∗ cov(AUCA, AUCB))
(2.13)

where var(AUCA) and var(AUCB) are the variances of AUCA and AUCB respectively,
and cov(AUCA, AUCB) is the covariance between AUCA and AUCB.
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Then, the p-value associated with this Z-score is calculated using the survival function
(also known as the complementary cumulative distribution function) of the standard nor-
mal distribution. In the formula 2.14, |z| represents the absolute value of the z-score. The
standard normal cumulative distribution function, represented by Φ(.), gives the proba-
bility of observing a value less than or equal to z in a standard normal distribution with
mean 0 and standard deviation 1 (DEMLER; PENCINA; D’AGOSTINO, 2012).

pvalue = 2(1− Φ(|z|)) (2.14)

In statistical hypothesis testing, the null hypothesis is a statement that assumes there
is no significant difference or relationship between two or more models. The z-value,
calculated based on the output data, is used to determine the level of deviation from the
null hypothesis.

When the null hypothesis is true, the z-value can be approximated by the standard normal
distribution. In a standard normal distribution, approximately 95% of the values fall
within 1.96 standard deviations of the mean. Therefore, as Sun e Xu (2014) stated, if
the z-value calculated for a particular comparison deviates too much from zero (e.g., z
> 1.96),it implies that the observed difference between the groups is unlikely to have
occurred due to random chance alone, supporting the idea that the models of interest are
not equal.

2.2 The Physics of Lightning

To begin discussing the physics of lightning, it’s important to understand that lightning
is a natural electrical phenomenon that occurs mostly during thunderstorms. Thun-
derstorms are a highly intricate weather phenomenon, and predicting future changes in
lightning activity requires a comprehensive understanding of the complex interrelation-
ships between different atmospheric system components. For a thundercloud to form,
first when the air in contact with the ground gets warmer and rises, is necessary that this
rising air parcel contains water or humidity. As the air parcel rises, it cools down and
the moisture in the air starts condensing into microscopic water droplets, forming visible
clouds. Due to the fact that the rising air parcel contains moisture, it cools down at a
slower rate than normal, which is called the wet adiabatic lapse rate. If the temperature of
the atmosphere decreases faster than the wet adiabatic lapse rate, the air parcel continues
to rise, forming a thundercloud, also known as cumulonimbus (COORAY, 2015).

Cooray (2015) describes that the full cycle of a thundercloud consists of three stages: the
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cumulus stage, the mature stage, and the final stage. During the cumulus stage, the air
rises through the atmosphere and forms a tall cloud. During the mature stage, the cloud
is capable of generating lightning flashes, and downdrafts occur as falling particles drag
down the surrounding air. According to Almeida (2016) an isolated cloud can keep active
for approximately 20 to 40 minutes. Finally, during the final stage, the cloud vaporizes
and disappears. Thunderstorms can be caused by the direct heating of moist air at
ground level by the sun, by the lifting of incoming air along the slopes of a mountain, or
by the penetration of cold air into a region with warm moist air. It is necessary to note
that thunderstorms are not the only source of lightning, they can also be generated by
sandstorms, volcano eruptions, and around the fireballs of a nuclear explosion.

Thunderclouds have a typical charge structure with three vertically stacked point charges:
a main positive charge at the top, a main negative charge in the middle, and a lower pos-
itive charge at the bottom. According to Rakov e Uman (2003) that is an increasing
consensus that the graupel-ice mechanism is the dominant mechanism for cloud electrifi-
cation, with collisions between graupel and small ice crystals producing electric charges
in the presence of water droplets.

2.2.1 Lightning formation and classification

Lightning is an abrupt and massive discharge of electrical energy in the atmosphere that
can produce a voltage ranging from 300,000 to tens of millions of volts, with a peak current
ranging from 5,000 to 200,000 amperes. Lightning occurs when the atmospheric electro-
magnetic field within a thunderstorm cloud exceeds the dielectric strength or insulating
capacity of the air at a certain location. The cloud becomes polarized, with the posi-
tive and negative charges separate, and while small ice crystals and splinters positively
charged are drawn upwards the graupel-ice, charged negatively descends (ELSOM, 2015).
Lightning is then produced by the electric charges generated in collisions that happen on
those different ice particle paths within a thunderstorm cloud. The majority of electric
charges are generated at altitudes where the temperature is between -10º C and -20º C,
at approximately 5 to 6 kilometers above ground level, and wind currents can transport
them within the cloud (PINTO JUNIOR; PINTO; REGINA, 2021).

The first discharge to make its way from the thundercloud toward the ground is called a
stepped leader, which leaves a downward path of ionized air. After it hits the ground a
return stroke is created, which is a streak that flows upward through the path, the stepped
leader is traced because after the first connecting is created the electrons near are free to
flow rapidly through. Although the flash appears to be upward, the electrons are flowing
earthward (ELSOM, 2015).
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Lightning flashes can take different paths depending on the polarity of the charge being
transported and the charged regions involved. Positive ground flashes also occur but are
less common. In some cases, lightning flashes can also be triggered by tall structures
at ground level, resulting in upward-initiated lightning flashes. Finally, bipolar lightning
flashes occur when a lightning flash starts as a negative or positive ground flash but later
makes a connection to the opposite charge center and transports a charge of opposite
polarity to the ground (RAKOV; UMAN, 2003).

In regard to the path, Figure 2.11 illustrates the various types of lightning paths. These
include intracloud lightning flashes, which occur between two main charge centers within a
single cloud, and intercloud lightning flashes, taking place between opposite charge centers
of neighboring clouds. There are also air discharges, which involve lightning flashes that
originate from a cloud but do not reach the ground. Lastly, Cloud-to-Ground flashes, the
most common type of lightning, occur between the negative charge center and the ground
(ALMEIDA, 2016).

Figure 2.11: Types of Lightning

Source: The Royal Meteorological Society (2017).

The cloud-to-ground lightning flashes can also be distinguished by the direction it travels,
ascending or descending. Descending negative flashes is the most common type, being
responsible for 90% of the occurrences. The ascending ones represent only 0.1% of the
total (PINTO JUNIOR; PINTO; REGINA, 2021).
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2.2.2 Climatological scenario affects lightning occurence

Anthropological and natural factors can influence the increase or decrease in lightning
generation. The proximity to bodies of water, topography, and temperature are some of
the natural factors, the ones influenced by human presence are urban areas, heat islands,
and pollution. Larger scale factors, such as continental distribution, and the presence of
air masses that moves according to the atmospheric global circulation, are responsible for
indicating the distribution of lightning across the globe, but regional variations are more
important to determine local behavior(PINTO JUNIOR; PINTO; REGINA, 2021).

It is possible to perceive that certain meteorological conditions are more prone to lightning
activity. For instance, during El Niño events, there is generally an increase in lightning
activity and thunderstorms in tropical land areas, while La Niña events tend to have the
opposite effect. This is attributed to the relationship between ENSO and the vertical
development of clouds into the ice region, which affects lightning activity. The percentage
of occurrences increasing from strong La Niña to strong El Niño varies from 17 to 45%
in the South and Southeast, 28% in the North, and more than 400% in the Northeast
(PINTO JUNIOR, 2015).

Moreover, in regards the influence of the SST of the Tropical Atlantic Ocean, the TSA
running mean is above 25%, the likelihood of lightning occurrences increases, particularly
in the North and Northeast regions. In this case, the percentage of occurrences increases
from 39%, during spring and summer to 65% during fall and winter in the Northeast.
The Tropical North Atlantic (TNA) - the TNA index representing surface temperatures
in the eastern tropical North Atlantic Ocean- was found to be influential only in the
Northeast region, where the likelihood increases when the Tropical South Atlantic (TSA)
- an indicator of surface temperatures in the Gulf of Guinea- is running mean below 25%
varies from 63% during spring and summer to 138% in the fall and winter in the Northeast.
Overall, the Northeast region also showed the most significant changes in all parameters
investigated (ENSO, TSA, and TNA) (PINTO JUNIOR, 2015).

2.3 State of the art

Lightning, a powerful natural electric discharge resulting from charge imbalances within
a cloud, between clouds, or between a cloud and the ground, poses considerable risks
and can lead to destructive consequences. Therefore, accurate and timely nowcasting of
lightning events is of paramount importance. Over the years, numerous studies have been
conducted to address this challenge, employing various approaches and methodologies.
These endeavors have aimed to enhance our understanding of lightning behavior and
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develop effective forecasting techniques to mitigate the potential impact of lightning-
related hazards.

For instance, in India, K, Gayatri et al. (2022) focuses on the pre-monsoon season in Ma-
harashtra, and employs the Weather Research and Forecasting (WRF) model with various
microphysical schemes to simulate and assess lightning flash counts. The researchers use
a dataset consisting of sixteen selected lightning events and analyze both three-hour in-
tervals and a 24-hour period. The results demonstrate promising performance, achieving
high accuracy, with a Probability of Detection (POD) ranging from 0.82 to 0.86 and a
low False Alarm Ratio (FAR) ranging from 0.25 to 0.29.

Recently, machine learning techniques such as neural networks have gained prominence
in meteorological research, due to their ability to process vast amounts of meteorolog-
ical data, identify patterns in complex relationships among parameters, and adapt and
generalize.

Abdullah, Adnan e Ruslan (2018) used a multi-layer perceptron for total lightning per
month forecasts in Malaysia, achieving a root mean squared error (RMSE) of 0.9990,
illustrating the method’s effectiveness. The model development involved using atmo-
spheric observations at ground level, including air pressure, temperature, humidity, wind
speed, and precipitation, as inputs for predicting lightning occurrences from Meteorolog-
ical Malaysian Services (MMS).

Alves et al. (2021) conducted a comparative study of predictive models based on artificial
neural networks to forecast cloud-to-ground lightning strikes in the northeastern region of
Pará, Brazil. The study utilizes data obtained from the NOAA-19 environmental satel-
lite, with a prediction horizon of up to five hours after satellite passage. The study aimed
to address the class imbalance issue by employing the Synthetic Minority Over-sampling
Technique (SMOTE) technique to balance the minority classes of lightning occurrences.
By comparing the performance of the models trained on raw data and SMOTE processed
data, the researchers found that the models trained on balanced data exhibited superior
performance, resulting in improved accuracy rates. Specifically, the accuracy rates in-
creased from 82.14% and 90.36% to 86.49% and 94.64%, respectively, when utilizing the
balanced data.

The work of Zhou et al. (2020), in China, employed a multi-source dataset consisting
of geostationary meteorological satellite data, Doppler weather radar network data, and
Cloud-to-Ground lightning location system data within a fully convolutional network with
an encoder-decoder architecture, for nowcasting lightning with a lead time of 0-1 hour.
The results surpassed those of a traditional algorithm, reaching 0.633, 0.386, 0.931, and
0.453 for the probability of detection, false alarm ratio, and area under the relative op-
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erating characteristic curve, respectively. Similarly, in Geng et al. (2020), researchers
developed a heterogeneous spatiotemporal network aimed at extracting knowledge from
both spatial and temporal domains. By using three data sources, namely WRF simula-
tions, lightning observations, and weather station observations, the network demonstrated
superior efficiency compared to baseline models.

Lin et al. (2019) proposed a model called Attention-based Dual-Source Spatiotemporal
Neural Network (ADSNet), which combines recent lightning observations and numerical
simulations using an attention mechanism. It compared the performance of ADSNet with
other models, including lightning parameterization schemes, Gradient Boost Decision Tree
(GBDT), and spatiotemporal deep neural network (StepDeep). ADSNet outperformed
the lightning parameterization schemes, GBDT, and StepDeep in most metrics. ADSNet
achieved the best performance among all the selected methods.

ADSNet’s attention mechanism explains the impact of input variables on lightning fore-
casting. Attention weights analysis shows that maximum vertical wind speed and graupel
mixing ratio are influential parameters, consistent with existing lightning parameteriza-
tion schemes. Furthermore, the distribution of temperature levels corresponds to the
temperature range associated with lightning occurrence.

Swiss researchers (MOSTAJABI et al., 2019) developed a four-parameter machine learning
model that can nowcast the occurrence of lightning within a 30 km radius up to 30
minutes in advance using commonly available weather parameters from local weather
stations. The machine learning model, XGBoost, outperformed three baseline models -
persistence, electrostatic field model, and Convective Available Potential Energy (CAPE)
model for all lead time ranges, achieving over 76% accuracy in predicting long-range
lightning threats. Additionally, a feature reduction analysis showed that including all
meteorological variables provided the best results, and sensitivity analysis indicated that
surface pressure, relative humidity, and surface temperature were more important than
wind speed in predicting long-range lightning activity.

Several studies conducted in South Africa explored the efficacy of lightning forecasting by
employing a diverse array of machine learning models and techniques. These investigations
focused on evaluating the accuracy and predictive capabilities of different approaches.

Gijben, Dyson e Loots (2017) utilizes lightning data from the Southern Africa Lightning
Detection Network (SALDN) of the South African Weather Service (SAWS) and NWP
(Numerical Weather Prediction) model data from the Unified Model (UM) at SAWS
to develop a lightning threat index (LTI). Through pre-processing techniques including
stepwise logistic regression and rare-event logistic regression to address the imbalance in
the dataset and feature selection from 25 candidate parameters. The LTI is developed
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separately for the spring and summer seasons, and its performance is evaluated through
probabilistic assessments. The results show high sensitivity, specificity, and accuracy of
the LTI in predicting lightning occurrences, with slightly over-forecasting during spring
and reliable forecasts during summer.

First, in Essa, Ajoodha e Hunt (2020) aimed to evaluate the use of an LSTM neural
network model on predicting short-term lightning flash densities in Bloemfontein and Piet
Retief, two areas in South Africa. The LSTM model utilized historical lightning flash data
from the SALDN. The results showed that the model successfully predicted approximately
30% of major lightning events. Specifically, for the Piet Retief area, around 50% of the
model’s predictions aligned with actual lightning occurrences. However, the accuracy was
lower for Bloemfontein, with only 20% of predictions matching observed lightning events.

Later on, Essa, Hunt e Ajoodha (2021) compared different models including LSTM, Au-
toRegressive (AR), and AutoRegressive Integrated Moving Average (ARIMA) for predict-
ing lightning strikes. The dataset used in the study was the Historical Cloud-to-ground
Lightning Data in South Africa for the year 2018, obtained from SALDN. The forecast
horizon for the models was short-term, specifically, the number of lightning strokes every
three hours. The results showed that the LSTM model outperformed the AR and ARIMA
models, with a lower Mean Absolute Percentage Error (MAPE) of 3,705 and RMSE of
9,426. In comparison, the AR model had a MAPE of 15,312 and an RMSE of 8,579, while
the ARIMA model had an MAPE of 15,080 and an RMSE of 8,301.

In a subsequent study, Essa et al. (2022) aimed to predict thunderstorm severity in North-
Eastern South Africa by utilizing lightning flash frequency data from SALDN and weather
station data from the South African Weather Service (SAWS). LSTM followed by a fully-
connected network (LSTM-FC), Convolutional neural network LSTM (CNN-LSTM), and
ConvLSTM.

The LSTM-FC model combined the LSTM architecture with a fully-connected network,
while the CNN-LSTM model incorporated convolutional neural network layers before
feeding the output into the LSTM layer. On the other hand, the ConvLSTM model
utilized convolutional operations within the LSTM cell gates. Among the three models,
the CNN-LSTM model demonstrates the best performance with the lowest MAE of 51
flashes per hour. The LSTM-FC model performs slightly worse with an MAE of 67 flashes
per hour, while the ConvLSTM model has the highest MAE of 86 flashes per hour.

Marope et al. (2023) study the prediction of lightning in Johannesburg via logistic regres-
sion, random forest, and LSTM machine learning models. These models use parameters
such as air temperature, relative humidity, dew point, and electric field data from the
Johannesburg Lightning Research Laboratory (JLRL) and SALDN to forecast lightning
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within 30 km of Johannesburg’s city center.

The challenge of imbalanced datasets, predominantly consisting of no lightning cases, is
addressed by employing a threshold-sweeping strategy, which adjusts the decision bound-
ary.

Although the LSTM model showed the highest precision and F1 score, it fell short in
lightning prediction effectiveness. In contrast, the logistic regression model excelled with
a recall score of 93% and a ROC-AUC score of 90%, surpassing both the random forest
model (80% recall and 85% ROC-AUC) and the LSTM model (53% recall and 76% ROC-
AUC).

The existing literature reveals a noticeable knowledge gap when it comes to assessing the
overall performance and efficacy of lightning forecasting models in diverse geographical
areas, particularly on a broader scale. Additionally, it is important to acknowledge the
limitations imposed by the absence of meteorological stations in certain locations, which
restricts the availability of data for those areas. To mitigate these challenges, incorpo-
rating globally available data can enhance the model’s adaptability and generalization
capabilities, while extending its accessibility to regions lacking local data and remote
sensing technologies.

To address these issues, this research will focus on investigating lightning forecasting
within a large region that comprises the entire state of Bahia, Brazil, which size is com-
parable to the countries of Spain and France, for instance. By encompassing a larger
geographical area, the study aims to broaden our understanding of how these models
perform across diverse regions with different meteorological characteristics. Furthermore,
this work will tackle the challenge posed by the absence of meteorological stations in
certain locations by utilizing globally available gridded meteorological data.

Therefore, by conducting a comprehensive analysis, considering diverse geographical areas,
advanced modeling techniques, and globally available data, this study aims to significantly
contribute to the advancement of lightning forecasting methodologies, their applicability
in various regions, and the resolution of data limitations. The utilization of complex
deep learning models and hybrid architectures will provide valuable insights into their
utility and effectiveness in lightning forecasting, turning this research a unique and novel
approach that can provide new scientific foundations for better forecasting lightning events
across large regions with limited data and computational resources.
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Methodology

This chapter will be discussed in sequence, detailed information about the study site,
including its physical and climatic characteristics. Also, the data analyzes the description
of how the data was preprocessed, leading up to the structural features of the AI models.

The experiments were conducted using the High-Performance Computing (HPC) system
named Ògún at SENAI CIMATEC. The CPU of the system supports both 32-bit and
64-bit operating modes, and it features an Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz.
The Python version used for the experiments was 3.9.5, while TensorFlow library version
2.4.1 was employed. For performance evaluation, we made use of scikit-learn library
version 0.24.2.

3.1 Environmental Characteristics of Study Area

The geographical location of a study area can have a significant impact on the research
conducted within it. The meteorological conditions that prevail in the area can affect the
study’s outcome. Furthermore, any relevant historical events or trends that have affected
the study area in the past should be accounted for when interpreting the data.

Describing the geographical location of the study area, the meteorological conditions that
prevail in the area, and any relevant historical events or trends that have affected the
area in the past is crucial to providing a better understanding of the context in which the
study was conducted.

First, in subsection 3.1.1 an overview of the study area’s geographical location is provided.
This includes information on the area’s size, boundaries, climate and biome classification,
and notable topographical features. Next, in subsection 3.1.2 the meteorological condi-
tions that prevailed in the study area, especially during the time in which the data used
for this research was acquired.

3.1.1 Overview of Bahia

The study area is the Brazilian state of Bahia, located in the northeastern region of the
country, with a diverse landscape and rich cultural history. According to the Instituto
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Brasileiro de Geografia e Estatística (IBGE, accessed 2023-04-10) census of 2010, the
states cover an area of 564,760.429 square kilometers, similar but still larger than Eu-
ropean countries, such as Spain and France. Figure 3.1 displays the location of Bahia
state, highlighted in blue, as shown, it is bordered by the Atlantic Ocean to the east and
the states of Sergipe, Alagoas, Pernambuco, and Piauí to the north. To the south, it is
bordered by the states of Minas Gerais and Espírito Santo.

Figure 3.1: Geographical Location of Bahia State

Source: Developed by the author utilizing the (OpenStreetMap contributors, 2023) data.

In 2010, Bahia had a population density of 24.82 inhabitants per square kilometer, which
is relatively low compared to more densely populated areas like cities or countries with
smaller landmasses and larger populations. This can be attributed to the fact that ur-
banized areas, which tend to be more densely populated, only cover 2,814.29 square
kilometers. However, it is estimated that the state was experienced population growth
since, the latest estimated data from IBGE (accessed 2023-04-10) to 2021, the population
stands at 14,985,284 people, showing an increase compared to the last census conducted
in 2010.
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Regarding the topography, Bahia exhibits distinct topographical variations, as evidenced
by the elevation map of Brazil presented in Figure 3.2. The state’s topography features a
diverse landscape, with coastal lowlands in the east and elevated areas in the west-central
region, which are only interrupted by the lower elevations of the São Francisco River
Valley crossing through the area.

Figure 3.2: Digital elevation model of Brazil.

Source: Alvares et al. (2013)

The climate in Bahia varies greatly across its vast territory. According to Almeida (2016)
the Köppen (1936) climate classification method was created and refined by Wladimir
Köppen is based on an assumption that natural vegetation of each major region on Earth
is essentially an expression of the prevailing climate, thus, it incorporates and combines
the information on air temperature, precipitation, and seasonal characteristics to classify.
According to Alvares et al. (2013) who applied the Köppen method to the Brazilian
territory, as shown in Figure 3.3, Bahia presented nine different types of Köppen climate,
however, with BSh, Aw, As and Af, being the most prevalent, listed in order of the area
covered.

The BSh classification in Köppen’s climate classification system refers to a hot semi-
arid climate and extends throughout the North and Central region of Bahia. In this
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climate type, the annual precipitation is less than the threshold needed to sustain a full
cover of vegetation, and potential evaporation rates are high due to the high temperatures
throughout the year, which was an annual average temperature above 18°C. The A classes
characterize tropical climates, typically featuring high temperatures and precipitation
rates. The Aw type, predominant in the western region, refers to a tropical savanna
climate with a distinct dry season and consistently warm to hot temperatures throughout
the year. The As is also a tropical savanna climate, however, the dry season is during the
summer and claims the territory central-eastern part of the state. Finally, the Af is the
tropical rainforest climate that is without a dry season and is predominant in the coastal
region on the east.

Figure 3.3: Brazil’s climate classification according to the Köppen (1936) criteria

Source: Alvares et al. (2013)

In the Brazilian biome Map in Figure 3.4 it is clear that Bahia has three different biomes:
Caatinga, Cerrado and Mata Atlântica. The Caatinga biome, located in a semi-arid
climate area, presents a great variety of landscapes and biological richness, with species
that are exclusive to this biome. The occurrence of periodic droughts leaves the vegetation
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without leaves, which regrows and becomes green during short periods of rain. However,
human activities such as deforestation and burning for agriculture and livestock have
altered the vegetation, negatively impacting wildlife, water quality, and soil and climate
balance. Cerrado is known as the richest savanna due to the wide range of plant and
animal species, including many endemic to the region. The Mata Atlântica biome is
located on the coast region and is the fifth most threatened and richest biome in endemic
species in the world. The biome is currently reduced and fragmented, with remaining
forest remnants mainly located in areas that are difficult to access(IBGE, accessed 2023-
04-14).

Figure 3.4: Brazil’s biome

Source: modified from IBGE (accessed 2023-04-13)

3.1.2 Climatological scenario

This study uses data collected between November 2017 and November 2018. It is impor-
tant to consider the prevailing climatological conditions during this period to identify any
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potential anomalies in the input data.

El Niño Southern Oscillation (ENSO) is a well-known atmospheric phenomenon that
impacts weather patterns in tropical and mid-latitudinal regions. The two phases of ENSO
are El Niño (hot phase) and La Niña (cold phase). These phases have a significant effect
on precipitation, causing more rainfall than usual, while in others, it can cause drought
due to changes in atmospheric circulation patterns. For example, during the 2015-2016 El
Niño event, the Northeast region of Brazil experienced a severe drought due to changes
in the rainfall patterns caused by the warming of the Pacific Ocean (GATEAU-REY et
al., 2018). El Niño years are characterized by higher sea surface temperatures (SST) in
the equatorial Pacific Ocean, resulting in higher air temperatures and lower precipitation
rates in Brazil. On the other hand, La Niña years are characterized by lower SST in
the equatorial Pacific Ocean, resulting in lower air temperatures and higher precipitation
levels in Brazil (SILVA et al., 2020).

According to L’Heureux (2019), a La Niña occurred between September and November
2017, with the event reaching its peak between November 2017 and January 2018. By
early May 2018, the La Niña Advisory was discontinued as the tropical Pacific Ocean
returned to an ENSO-neutral state and turned into a weak El Niño around October 2018
until May 2019.

However, it should be noted that the study period coincided with an unusual scenario.
As stated by Brito et al. (2021), it marked the end of a severe drought that began in
2012 and gradually decelerated, entering a normal stage in 2018. Its impacts are visi-
ble while analyzing the drought monitor in Figure 3.5, which was developed through a
multistakeholder effort and is currently coordinated by the Agência Nacional de Águas
e Saneamento Básico (ANA) in partnership with the Ministério da Integração Nacional
(MI) and the Instituto Nacional de Meteorologia (INMET) at the federal level and with
the participation of all Northeastern states. Figure 3.5 represents the affected area and
severity of the drought effects in the Northeast within the period of interest. Severe
drought was still in a significant portion of the Northeastern region from November 2017
to January 2018 as it continues to decrease until April and May.

3.2 Data Collection

The dataset employed as input in this study encompasses various meteorological vari-
ables, collected at six-hour intervals between November 2017 and November 2018 from
the Global Data Assimilation System (GDAS). This dataset is the same data utilized
in the Global Forecast System (GFS) at the National Centers for Environmental Pre-
diction (NCEP)(National Centers for Environmental Prediction/National Weather Ser-
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Figure 3.5: Drought Monitor: Affected Area and Severity in the Northeast from November 2017
to November 2018

Source: Modified from ANA (accessed 2023-04-10)

vice/NOAA/U.S. Department of Commerce, 2015). While this data is globally available,
the scope of this research focused exclusively on the region corresponding to the state of
Bahia, Brazil. As a result, the dataset was limited to data localized within the specified
geographical boundaries, confining the range for latitude from 8°S to 18°S and longitudes
from 46°W to 37°W.

Furthermore, the meteorological characteristics of the study area have been detailed in
subsection 3.1. However, it is worth noting that Bahia presents nine different types of
climate according to the Köppen (1936) classification method (ALVARES et al., 2013),
with hot semi-arid climate, tropical savanna climate with dry winter, tropical savanna
climate with dry summer, and tropical rainforest, being the most predominant.

As for the target, lightning occurrence data were obtained from the Brazilian Lightning
Detection System (BrasilDAT), a network for lightning detection and monitoring managed
by the Grupo de Eletricidade Atmosférica (ELAT) at the Instituto Nacional de Pesquisas
Espaciais (INPE) in Brazil.
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The BrasilDAT dataset is a comprehensive collection of lightning data in Brazil, created
by combining information from multiple lightning locating systems. It incorporates data
from more than 110 sensors deployed across the country, including the Thunderstorm Lo-
cation System (TLS), the Rede Integrada Nacional de Detecção de Descargas Atmosféricas
(RINDAT), and the Sistema Brasileiro de Detecção de Descargas atmosféricas (Brasil-
DAT). The decision to merge data from these systems was made after realizing that each
system measured different aspects of lightning activity, making them complementary to
one another. Consequently, the data from the various sensors were merged together using
a grouping method based on time-of-event, location uncertainty, stroke type, and peak
current. This grouping process results in the creation of the BrasilDAT dataset. The
dataset captures various aspects of lightning activity, such as cloud-to-ground flashes, in-
tracloud flashes, peak currents, and stroke types. For each stroke detected, the dataset
includes precise location data in space and time, as well as information regarding the
charge of the current (PINTO JUNIOR; PINTO, 2018).

Naccarato et al. (2012) presented a comprehensive overview of the sensor locations in
Figure 3.6. The figure depicted the sensor distribution in 2012, including sensors that
were already functional as well as those under construction. The BrasilDAT network
eventually expanded to include 75 sensors, providing coverage across various regions in
Brazil. On the other hand, the RINDAT network consisted of 35 sensors deployed in 8
states of Brazil, primarily concentrated in the mid-southern region of the country. The
hybrid network comprised a combination of low-frequency (LF) sensors such as LPATS,
IMPACT, and LS7000, along with very high-frequency (VHF) sensors like LS8000. The
latter was still under installation and thus not shown on the map. Based on the available
information, it can be inferred that the map presented in this study represents the most
recent information on the location of the sensors. However, it is important to note that
the map may not reflect the current state due to potential updates or changes since its
creation.

3.2.1 Data Exploration

The BrasilDAT dataset spans over a period of 362 days, starting on 20/11/2017 at 20:00
and ending on 17/11/2018. It comprises 1,909,576 data entries detailing the location,
time, and electrical current produced by each lightning event. Out of these data points,
475636 are lightning occurrences, while 1758 are non-occurrences. Analyzing this data
allows insights into the behavior of lightning during that period. In Figure 3.7, the total
number of lightning occurrences registered by month is displayed, showing a more active
period from December 2017 through March 2018. This period coincides with the end of
the drought in the region. The number of lightning occurrences rises again in October,
corresponding to the period when the El Niño phenomenon is starting to take place.
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Figure 3.6: Configuration of Sensors for BrasilDAT (Left) and RINDAT (Right) in 2012

Source: Altered from Naccarato et al. (2012).

Figure 3.8 provides the information on the time of day this event occurs with more fre-
quency at the end of the day, peaking at 19:00 (military time). Therefore, it can be
assumed that the likelihood of a lightning occurrence is near that hour.

Figure 3.9 displays a heatmap illustrating lightning strikes in Bahia throughout the entire
study period. The heatmap highlights regions that are more frequently affected by light-
ning strikes. This visualization was created using BrasilDAT, which has been manipulated
to align with a spatial grid at a resolution of 0.25 degrees.

The Figure shows that during this period, the western region of the state, which includes
the Cerrado biome and has higher altitudes, has the highest number of lightning activities.
In contrast, the central region of the state, while also on higher ground, shows less activity,
which can be attributed to the Caatinga biome. This observation aligns with Abreu et
al. (2020)’s findings, which note a significant frequency of lightning strikes in the western
region of Bahia.

It is worth noting that humidity and temperature are key factors in the occurrence of light-
ning, and the Cerrado biome, with its higher humidity and temperature, may contribute
to the higher lightning activity in the western region of the state.
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Figure 3.7: Number of lightning occurrences though the months

Source: Developed by the author.

Figure 3.8: Number of lightning occurrences by hour

Source: Developed by the author.

3.2.2 Preprocessing

GDAS provides meteorological data in the Network Common Data Form (NetCDF) for-
mat, with each variable associated with a varying number of specific coordinates. For
instance, a temperature variable may have latitude, longitude, and time coordinates,
while other temperature variables may include an additional dimension of altitude above
mean sea level. In total, the data consisted of 102 variables and 12 coordinates. In or-
der to use this data with Pandas, we converted it to a format where each combination
of variable and dimension was represented as a feature, resulting in a dataset with 355
features.
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Figure 3.9: Density Heatmap of Lightning Strikes in Bahia throughout the Study Period

Source: Developed by the author.

In order to ensure that the right information is being fed to the deep learning model,
every dataset has to undergo a quality check process. While minimal manipulation is
required for the input dataset in this study, handling missing data is a crucial step. The
final dataset comprises most of the available parameters, however, variables with missing
data were discarded. A variable with missing data represented snow, was filled with
zeros since snow is not expected in Bahia. The input dataset for the model included 332
meteorological variables.

The GDAS data were collected every six hours with grid cells at a resolution of 0.25º
(approximately 27 km in lower and medium latitudes), for the whole Bahia territory, while
the BrasilDAT gives a precise time, location and current of each lightning strike. In order
to use the BrasilDAT information used for the target the data had to be manipulated to
fit the same pattern as the meteorological data, which meant fitting into the same spatial
grid with 0.25 degrees resolution and in the 6 hours time-frequency, while also adjusting
the local time UTC-time, so both datasets can match. The target turned into categorical
data to represent the presence or absence of lightning, thus bifurcated into those two
classes. Subsequently, a one-hot encoding technique was applied to this categorical data.

As aforementioned, Figure 3.9 displays a heatmap illustrating lightning strikes in Bahia.
Within this visual representation, each cell corresponds to a specific spatial grid resolution
of the data, fixed at 0.25 degrees. This specific representation not only highlighting regions
with varying frequencies of lightning occurrences but allows for a clear depiction of the
spatial resolution employed in the study but also provides an informative view of the area
coverage by the data. To further elaborate, the training as well as the predictions are
made for the whole grid, encompassing areas not monitored by local weather stations.

48



Chapter Three 3.2.2 Preprocessing

This approach not only allows for predictions in those data-scarce areas but also ensures
replicability and applicability to similar regions, even those outside the Bahia state.

Supplying imbalanced data to a neural network can make it excessively difficult for the
network to learn properly and operate as intended. This issue is particularly relevant
for lightning data, as even during the rainy season, the moments when lightning occurs
are significantly fewer than those when it does not, as noted by Alvares et al. (2013).
To address this problem, a proportionate sampling approach was adopted to create the
training and validation datasets. To elaborate, for each recorded instance of a lightning
event at a specific grid location, another moment where no lightning event was recorded
was randomly selected. This approach helped balance the dataset and provided more
representative information to the neural network.

The test subset was created differently, consisting of 309,791 data points. Although it was
ensured that this dataset contained 30% of randomly chosen lightning occurrence data,
with the remaining 70% reserved for training and validation, a one-to-one proportion was
not utilized. This dataset construction aimed to maintain a very similar unbalancing
between lightning and no lightning instances perceived in the entire dataset into the
test data, reflecting real-world scenarios. This approach aims to deal with the balance
between providing a sufficient amount of test data that represents the real-world scenario
for evaluation purposes while managing the computational costs associated with larger
datasets. Thus, among these data points, 303,893 corresponded to lightning occurrences,
while 5,898 represented instances of no lightning occurrences. Figure 3.10 illustrates this
proportion between lightning and no lightning data distribution for the entire available
period used in this study on the left side and for the test data on the right. Lightning
occurrences accounted for only 0.77% of the entire dataset, while in the test dataset, it
was 1.9%. Although this represents a very slight increase in the proportion, the dataset
remains highly unbalanced, preserving the same order of magnitude of class unbalancing
between both datasets.

As previously mentioned, the test subset consisted of 30% randomly chosen points of
lightning occurrences data, thus leaving 70% to be divided by training and validation.
The division process entailed allocating approximately 21% (which corresponds to 30%
of the remaining 70%) for the validation set, while the remaining 49% was dedicated to
the training set. This allocation strategy aimed to reserve a significant portion of the
lightning data for training and validation while still maintaining a substantial amount for
testing. The total amount of data, with both no lightning and lightning occurrences used
for training and validation, was 19,126, and 8,197, respectively.

As aforementioned, to properly train a neural network such as RNNs and CNNs on tempo-
ral data, it is crucial to define a lookback window that provides enough historical context
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Figure 3.10: Proportion between lightning and no lightning occurrences considering the entire
(left) and the test (right) datasets

Source: Developed by the author.

for the model to understand the temporal aspect of the data. In this study, an 8-timestep
lookback window was used, since each time step corresponds to 6 hours, the lookback
total corresponds to 2 days. This procedure reduced the total number of samples, as
any sample with missing data within this window could not be used as input in a neural
network and was discarded. Careful consideration was given to ensure that the lookback
window was appropriately generated to avoid mistaking random data points with a later
point in time, thus maintaining the time series’ quality.

Concurrently, the prediction horizon for this model is specifically set at a single step, or 6
hours, into the future. This configuration allows the model to project its prediction one
timestep ahead, fitting the GDAS dataset’s temporal frequency.

The final step of preprocessing is the scaling of the data between zero and one, that is
a significant step, it ensures that all features are on the same scale, preventing certain
features from dominating the others, which can lead to biased predictions, thus improving
the convergence speed and the performance of the network. To verify unbiased evaluation,
it is important to keep the test samples separated from the rest of the data during this
phase. For that reason, the calculation of the minimum and maximum values is only
performed on the training and validation sets, avoiding any contamination between the
training and test data. The resulting normalization parameters are then used to scale the
entire dataset, including the test set.
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3.3 Deep Learning Models Development

When designing an ANN, the choice of its architecture is crucial. This involves deter-
mining the number of layers, the number of neurons per layer, activation functions, and
hyperparameters. The selected architecture can significantly impact the network’s perfor-
mance, and identifying the optimal configuration for a specific problem can be challenging.
In this study, we used an empirical testing methodology to select the optimal ANN archi-
tecture. The experiment conducted an iterative process of trial-and-error experiments to
tune the architectures MLP, CNN, LSTM, GRU, and the hybrids CNN-LSTM and CNN-
GRU. The process involved adjusting the number of layers, the number of neurons per
layer, and other hyperparameters such as the learning rate and batch size. Thus, identify-
ing the configuration that produced the best performance through the testing of various
configurations on the target dataset. Figure 3.12 shows the final structures developed for
each architecture.

During the process of training various neural network models, it became apparent that
different architectures require varying numbers of epochs to converge on the loss graph.
An epoch is a single pass through the entire training dataset, and convergence refers to
the point where additional training does not significantly reduce the loss, indicating that
the model has effectively learned the underlying patterns in the data. The method of trial
and error was employed, closely monitoring the changes in the loss curve.

Some models responded differently to attempts to improve their performance, resulting
in either overfitting or underfitting. By meticulously observing the loss graph’s evolution
across various numbers of epochs, the training process was fine-tuned, leading to more
efficient and tailored model training the best balance achieved is represented by the loss
curve in Figure 3.11.

The MLP model is designed with a total of eight layers. The initial layer is a Dense
layer furnished with 512 neurons, using TanH as the activation function. A Dropout layer
with a 0.5 dropout rate follows, randomly disabling 50% of the neurons during training
to effectively mitigate the risk of overfitting.

This architecture then expands to include three subsequent Dense layers, each accom-
modating 256 neurons and utilizing the SELU as the activation function. To further the
model’s robustness, another Dropout layer is incorporated, retaining the 0.5 dropout rate,
subsequent to the three Dense layers. Following this, a BatchNormalization layer is used
to standardize the output of the preceding layer.

The architecture then grows with the addition of four Dense layers, each housing 128
neurons, continuing to utilize the TanH activation function. Post this integration, an
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additional Dropout layer with a 0.5 dropout rate is included to boost the model’s gen-
eralization capabilities. Subsequently, a Flatten layer is implemented to appropriately
reshape the output from the prior layer.

The model then extends with the sequential addition of three Dense layers, each populated
with 16 neurons. A SELU activation function is once again employed here, followed by yet
another Dropout layer maintaining the 0.5 dropout rate. The model concludes with a final
Dense layer consisting of two neurons, serving as the output layer for binary classification.

The model’s compiling process leverages the Adam optimizer with a learning rate of
0.0001. As the output was encoded appropriately, the categorical cross-entropy loss func-
tion is selected, fitting the classification task at hand. The model is then trained utilizing
a batch size of 256 across an extensive 1500 epochs, permitting the model to extract
detailed patterns from the dataset.

The LSTM model initiates with a layer composed of 32 memory units. To regularize the
model, this is followed by a Dropout layer featuring a rate of 0.5 and a BatchNormal-
ization layer. Subsequently, an additional LSTM layer with 16 units is integrated into
the model. This is once again accompanied by the same combination of Dropout and
BatchNormalization layers for consistent regularization. A third LSTM layer, comprising
another 16 units, is incorporated, succeeded by an additional Dropout layer. The model
architecture culminates with a final Dense layer containing two neurons.

The model is compiled using the Adam optimizer, which operates with a particularly low
learning rate of 0.00001 to ensure precise adjustments during the training process and
the same loss function as the MLP. The model is then trained using a relatively large
batch size of 256 to balance computation speed and gradient estimation accuracy. This
process continues for an extended period, comprising 1500 epochs, to allow the model to
thoroughly learn the patterns in the data.

The GRU model initiates with a layer comprised of 16 memory units. To enhance the
model’s overall performance, this is succeeded by a Dropout layer featuring a 0.3 dropout
rate, as well as a BatchNormalization layer. An additional GRU layer with a scaled-down
size of just 4 units is inserted, which is immediately followed by a second Dropout layer,
this time with a reduced rate of 0.2. The final layer is a Dense layer, equipped with two
neurons, which serves as the output layer dedicated to binary classification tasks. This
refined structure offers an ideal balance between complexity and performance, ensuring
the model effectively learns patterns in the data while avoiding overfitting. The training
of this GRU model adopts the same optimizer, learning rate, loss function, and batch size
as were used in the LSTM model. However, the training process extends over a longer
period, encompassing a total of 2000 epochs.
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The 1D CNN model initiates with a 1D convolutional layer furnished with 32 filters,
utilizing the ReLu activation function to introduce non-linearity. This layer is succeeded
by a MaxPooling1D layer with a pool size of 4, effectively reducing the spatial dimensions
of the output. The model then incorporates a Flatten layer, transforming the multi-
dimensional input into a one-dimensional format suitable for connection with subsequent
dense layers. A Dropout layer is introduced next to prevent overfitting by randomly
deactivating a portion of the neurons during the training process. The model culminates
with a Dense layer, housing two neurons, serving as the output layer.

The configuration for the optimizer, learning rate, loss function, and batch size mirrors
that of the previously described MLP model, ensuring a consistent approach to learning.
An additional early stopping mechanism is integrated into this training process, termi-
nating training when the model ceases to improve, thus allowing the training to conclude
after 344 epochs.

The hybrid network, which integrates elements of both CNN and LSTM architectures,
comprises seven layers. The initial layer is a 1D convolutional layer (Conv1D) with 256
filters, a kernel size of 1, and employs TanH as the activation function. Following this,
a MaxPooling1D layer is integrated, reducing the spatial dimensions of the output by a
factor of 4.

After the pooling operation, a BatchNormalization layer is added to standardize the
outputs, followed by a Dropout layer with a rate of 0.6 to help mitigate overfitting. The
architecture then incorporates an LSTM layer with 128 memory units, providing the model
with the ability to recognize temporal dependencies. To further guard against overfitting,
another Dropout layer with a rate of 0.5 is introduced. The architecture concludes with
a final Dense layer, outfitted with two neurons, serving as the output layer.

The model’s compilation parameters of optimizer, learning rate, loss function, and batch
size, remain consistent with the configurations used in the previously described LSTM
and GRU models. An additional early stopping mechanism is utilized, consequently, the
training process concluded after a total of 525 epochs.

Lastly, The CNN and GRU hybrid network model commences with a 1D convolutional
layer, characterized by a kernel size of 2 and 256 filters, employing the SELU as the
activation function. To prevent neuron saturation, the layer is initialized with a bias
initializer of zeros and a kernel initializer of He initializer, which sets the initial values
for the biases and weights respectively.Following this, the model incorporates a MaxPool-
ing1D layer with a pool size of 1 to condense the feature maps, subsequently using a
BatchNormalization layer, and then a Dropout layer with a rate of 0.3.
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The architecture proceeds with a second 1D convolutional layer, now furnished with 128
filters and a larger kernel size of 4, using ReLU as its activation function and same
initializers as the first CNN1D layer (EKMAN, 2021). This layer is succeeded by another
MaxPooling1D layer with a pool size of 4, preparing the data for introduction to the GRU
layer.

The GRU layer follows, consisting of 128 units and employing TanH as its activation
function. This layer features a kernel regularizer, that is a technique intended to improve
generalization, adding a penalty to the loss function. L1 regularization calculates the
sum of the absolute activation values, promoting sparsity by allowing some activations
to become zero. L2 regularization calculates the sum of the squared activation values,
encouraging small activation values in general (BROWNLEE, 2018).

The kernal regularizer was L1 and L2 regularizers with regularizes factors, which deter-
mines the strength that the regularization is applied, set on 1e-5 and 1e-4, respectively. It
is also equipped with a bias regularizer with a specified L2 value of 1e-4, and an activity
regularizer assigned with a L2 value of 1e-5. To conclude the architecture, a final fully-
connected Dense layer incorporating two neurons is included. For binary classification
tasks, the softmax activation function is applied to provide output probabilities.

The architecture concludes with a final fully connected Dense layer, populated with two
neurons and utilizing the softmax activation function for outputting probabilities for the
binary classification task.

The compilation parameters for the model align with those used in the previously de-
scribed LSTM, GRU, and hybrid models. The early stopping mechanism is also in place,
concluding the training process after 303 epochs when the model performance plateaus.

3.3.1 Validation Criteria and Final Model Selection

This study endeavored to assess the predictive power of various models on a chosen target
variable, employing a series of carefully selected evaluation metrics to accomplish this goal.
These metrics included Accuracy, Precision, Recall, F1-Score, AUC-ROC, and PRC-AUC.
Comprehensive details about these metrics can be revisited in section 2.1.3.

To ensure a robust comparison across different models, the DeLong test, a method that
is broadly used to compare two or more correlated binary classifiers on the basis of AUC-
ROC, was employed. It provided a statistically significant assessment of their perfor-
mances.
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In the context of this study, the significance level (p-value) for the DeLong test was set to
0.05. This implies that if there is less than a 5% chance that the observed difference could
occur purely by chance, it is considered to be statistically significant. This threshold is
widely adopted in statistical analyses.

The specific implementation of the DeLong test used in this study was derived from the
algorithm proposed in the paper by Sun e Xu (2014). This approach comprised several
fundamental steps, which can be better understood through a thorough examination of the
original paper by DeLong, DeLong e Clarke-Pearson (1988) and the subsequent work by
Sun e Xu (2014). These references provide a comprehensive insight into the complexities
of DeLong’s method.
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Figure 3.11: Loss Curves of The Neural Network Models - Panel (a) represents the loss curve
for MLP, (b) for CNN, (c) for LSTM, (d) for GRU, (e) for CNN-LSTM, and (f) for CNN-GRU,
respectively. The blue curve represents the training set, and the orange curve represents the
validation set.

Source: Developed by the author.
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Figure 3.12: Final Architectures for the Neural Network Models

Source: Developed by the author.
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Chapter Four

Results and Discussion

4.1 Evaluation of models’ performance

This section presents the metric results of the deep learning model’s evaluation for pre-
dicting lightning activity up to 6 hours ahead. The performance analysis of various models
and compare their statistical metrics. Additionally, the computational cost is associated
with training and making predictions.

Figure 4.1 presents the normalized confusion matrix created based on the model’s pre-
dictions. From the confusion matrix, it is evident that the models achieved a high hit
rate in almost all cases, with 99.7% accuracy for the "No Lightning" class, except for the
CNN, which recorded 99.6%. For the " Lightning" class, the models reached an accuracy
ranging from 90.6% to 99.7%. The differences within the results are minimal; thus, the
statistical metrics must be analyzed further to discern any significant variations.

Table 4.1 provides the metric values focusing on the "No Lightning Activity" class. There-
fore, predicting the "Lightning" class correctly equates to predicting negative instances,
thereby underscoring the significance of specificity as the key metric. Since, the specificity
measures the proportion of actual "Lightning" instances, that are correctly identified.

All models demonstrated exceptional performance on the task, with F1-scores ranging
from 0.9973 to 0.9981, indicating a strong balance between precision and recall.The F1
score is a particularly valuable metric when dealing with imbalanced datasets, as it con-
siders both false positives and false negatives.

The models also exhibited high discriminative power, as evidenced by their robust ROC-
AUC and PRC-AUC scores. The CNN-GRU model achieved the highest score of 0.9785
for the ROC-AUC, which reflects the ability to distinguish between positive and negative
instances across various classification thresholds. While, all the models reached near-
perfect score for PRC-AUC,ranging from 0.9982 to 0.9992, assessing the precision-recall
trade-off. Consistently high scores in both metrics indicate excellent performance across
different decision boundaries.

Precision values ranged from 0.9982 to 0.9992, and recall ranged from 0.9963 to 0.9970.
Precision represents the proportion of true negatives among all predicted negatives, while
recall measures the proportion of true negatives correctly identified. The highest speci-
ficity score was reached by the CNN-GRU model with 0.96, this metric specifically focuses
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Table 4.1: Metrics results for the No Lightning activity class. Values in bold represent the best
values for each metric.
Models F1

Score
ROC
AUC

PRC
AUC

Precision Recall Specificity Accuracy

MLP 0.9979 0.9650 0.9986 0.9987 0.9970 0.9330 0.9958
CNN 0.9973 0.9543 0.9982 0.9983 0.9963 0.9123 0.9947
LSTM 0.9978 0.9518 0.9981 0.9982 0.9974 0.9062 0.9956
GRU 0.9979 0.9769 0.9991 0.9992 0.9966 0.9573 0.9958
CNN-LSTM 0.9980 0.9764 0.9991 0.9991 0.9969 0.9559 0.9961
CNN-GRU 0.9981 0.9785 0.9992 0.9992 0.9970 0.9600 0.9963

on correctly predicting negative instances, which aligns with the objective of identifying
"No Lightning Activity" cases accurately. The models achieved high scores in all these
metrics, highlighting their ability to correctly identify negative instances.

Moreover, the models demonstrated remarkable accuracy in classifying instances into the
"No Lightning Activity" class, with all models achieving accuracy scores ranging from
0.9947 to 0.9963, except for the CNN model with a score of 0.995.

The performance metrics for the "Lightning Activity" class are presented in Table 4.2.
The key metric of interest in this context is recall, as correctly predicting the "Lightning"
class corresponds to positive instances.

All models achieved near-perfect specificity scores, ranging from 0.9963 to 0.9974. The
LSTM model stood out with the highest performance, followed by CNN-GRU(0.8704) and
CNN-LSTM(0.8572), showcasing its superior capability in correctly classifying negative
instances. In terms of accuracy, all models performed well, ranging from 0.9947 for the
CNN model to 0.9963 for the others.

The GRU, CNN-LSTM, and CNN-GRU models exhibit the highest recall scores of 0.9573,
0.9559, and 0.96, respectively, along with ROC-AUC values ranging from 0.9764 to 0.9785.
This indicates that these models are particularly effective at correctly identifying instances
of the "Lightning" class and have excellent discriminative power. The high recall scores
suggest a lower tendency to miss true "Lightning" instances.

In regards to precision, it indicated the ability to avoid false positives, i.e., misclassifying
"No Lightning" instances as "Lightning." Among the models, the LSTM model demon-
strates the highest precision score of 0.8704, with both hybrid models closely following,
with precision scores of 0.8574 and 0.8604, signifying their effectiveness in reducing false
positives.

Among the models, the CNN-GRU model achieved the top F1-score of 0.907 and PRC-
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Table 4.2: Metrics results for the Lightning activity class. Values in bold represent the best
values for each metric.
Models F1

Score
ROC
AUC

PRC
AUC

Precision Recall Specificity Accuracy

MLP 0.8941 0.9650 0.8022 0.8584 0.9330 0.9970 0.9958
CNN 0.8668 0.9543 0.7549 0.8256 0.9123 0.9963 0.9947
LSTM 0.8879 0.9518 0.7906 0.8704 0.9062 0.9974 0.9956
GRU 0.8969 0.9769 0.8085 0.8437 0.9573 0.9966 0.9958
CNN-LSTM 0.9039 0.9764 0.8203 0.8572 0.9559 0.9969 0.9961
CNN-GRU 0.9074 0.9785 0.8267 0.8604 0.9600 0.9970 0.9963

Table 4.3: Average Value of the Metric Results
Models F1

Score
ROC
AUC

PRC
AUC

Precision Recall Specificity Accuracy

MLP 0.9460 0.9650 0.9004 0.9286 0.9650 0.9650 0.9958
CNN 0.9320 0.9543 0.8766 0.9120 0.9543 0.9543 0.9947
LSTM 0.9428 0.9518 0.8944 0.9343 0.9518 0.9518 0.9956
GRU 0.9474 0.9769 0.9038 0.9214 0.9770 0.9770 0.9958
CNN-LSTM 0.9510 0.9764 0.9097 0.9282 0.9764 0.9764 0.9961
CNN-GRU 0.9528 0.9785 0.9130 0.9298 0.9785 0.9785 0.9963

AUC value of 0.827. This implies that it strikes a balance between precision and recall,
indicating its effectiveness in capturing true "Lightning" instances while minimizing false
positives.

It is worth noting that in situations where it is crucial to correctly identify every "Light-
ning" occurrence, prioritizing safety and preparedness, a model with a high recall for the
"Lightning" class is preferred. Such a model excels at capturing the majority of true
"Lightning" instances, even if it comes at the cost of misclassifying a few "No Lightning"
instances as "Lightning". This prioritization reduces the risk of being unprepared for an
actual lightning event.

Therefore, for tasks that require accurate detection of "Lightning" instances, such as
weather monitoring systems or outdoor event management, the GRU model or one of
the hybrid models, which demonstrate superior recall for the "Lightning" class, would be
more suitable choices.

Table 4.3 presents the mean values for each metric. From this table, it becomes evident
that the hybrid CNN-GRU model consistently outperforms in various metrics, followed
closely by the CNN-LSTM and GRU models. However, there is an exception in the
precision metric where the LSTM model outshines the rest. This is primarily due to its
heightened precision in predicting the "Lightning Activity" class. For the "No Lightning
activity" class, the other three models, again, exhibit superior performance

60



Chapter Four 4.1. Evaluation of models’ performance

Table 4.4: Computational cost: Training and Inference Times for Each Model
Models Training time Inference time (Per data point)
MLP 50 min 34 s 1 milliseconds 627 µs
CNN 45 min 19 s 89 µs
LSTM 2 h 39 min 29 s 536 µs
GRU 2 h 2 min and 21 s 262 µs
CNN - LSTM 1 h 26 min 23 s 133 µs
CNN - GRU 1 h 20 min 7 s 156 µs

The obtained results align with the findings reported in the literature. In their study,Alves
et al. (2021) achieved accuracy rates ranging from 82.14% to 86.49% when dealing with
imbalanced data. However, by applying the SMOTE technique to balance the data, they
were able to improve the accuracy to a range of 90.36% to 94.64%, slightly suppressing
the accuracy found in this study in the second scenario.

Additionally,Mostajabi et al. (2019) also reported a lower accuracy rate of 76%. However,
even though their study focused on ultra-short prediction horizons of only 30 minutes and
attempted to predict lightning occurrences within a larger radius of 30 km.

When comparing the results of this study to the study conducted by Marope et al. (2023),
it is observed that their best model was a logistic regression model, achieving a recall
score of 93% and an ROC-AUC score of 90%. While, in this study, the CNN-GRU
model, achieved the same ROC-AUC value of 98% for both classes. For the recall, when
considering "No Lightning" instances as the positive class, it reached 100% and for the
"Lightning" instances as the positive class 96%.

Consideration of computational cost is crucial in practical applications as it impacts the
efficiency and usability of the models. Table 4.4 provides information on the computa-
tional cost for each model, including training and inference times. In terms of training
times, the MLP and CNN models outperformed the LSTM and GRU models. The MLP
and CNN models exhibited faster model convergence, possibly due to their simpler archi-
tectures. It is worth noting that the MLP model, despite having a greater depth and more
neurons, still achieved faster convergence. On the other hand, the LSTM and GRU mod-
els required longer training times, likely due to their more complex structures, designed
to capture long-term dependencies in the data.

The inference time was calculated with the total time it took to make the prediction
upon the test dataset, and subsequently divided by the amount of data, the CNN model
demonstrated the fastest prediction speed among the individual models. This efficiency
can be attributed to the convolutional layers in the CNN architecture, which excel at
parallel processing and feature extraction. Conversely, the MLP model showed the slowest
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inference time, which can be attributed to both its fully connected characteristics and
mainly due to its dept and number of neurons.

When considering the hybrid models, which combine different architectures, a reduction
in both training and inference times is observed compared to their individual recurrent
network components. This improvement can be attributed to the synergistic effects of
combining the strengths of different models. The hybrid architectures leverage the effi-
ciency of the CNN for feature extraction and the ability of the LSTM or GRU to capture
temporal patterns.

In particular, among the models with preferable metric scores, such as the GRU and
the hybrid models, the CNN-GRU model stands out with the lowest training time. For
that reason, considering the computational cost alongside the performance metrics, the
CNN-GRU model emerges as a compelling choice for real-time applications where both
computational resources and prompt predictions are crucial. It is worth noting that, once
usually numerical weather prediction models require much more computational power and
hence time to perform their predictions, this solution provides an alternative yet viable
approach that requires much less computational power to execute the forecasts, becoming
a more energy-efficient and thus more sustainable solution.

4.2 Delong Test

Figure 4.2 represents the p-values and z-values obtained when comparing the developed
models against each other. A positive z-score indicates that the observed difference is
larger than the expected mean difference, while a negative z-score would indicate that the
observed difference is smaller than the expected mean difference.

These z-scores obtained from the DeLong test indicate the magnitude of deviation be-
tween the observed differences and the expected differences under the null hypothesis.
Larger absolute z-scores reflect more significant deviations, suggesting stronger evidence
for differences between the compared groups. The p-value, on the other hand, represents
the probability of observing the difference in performance between two models purely by
chance, assuming that there is no true difference in their underlying performance. A low
p-value suggests that the observed difference is unlikely to be due to chance and indicates
evidence of a significant difference in performance between the models under compari-
son. Therefore, in general, as the z-value increases, the corresponding p-value tends to
decrease. This is highlighted by the findings depicted in the Figure 4.2.

In hypothesis testing, if the p-value is below the chosen significance level (e.g., p < 0.05),
we reject the null hypothesis in favor of the alternative hypothesis. This means that there
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is a statistically significant difference between the compared models. Similarly, if the
z-value exceeds the critical value associated with the chosen significance level (e.g., z >
1.96 for a 0.05 significance level in a two-tailed test), the null hypothesis is rejected. The
critical value represents the threshold beyond which the observed difference is considered
statistically significant.

In the given results, the hybrid models (CNN-GRU and CNN-LSTM) showed the highest
z-scores, surpassing 8.2727 in comparison to the other models, except for the comparisons
between them and the GRU, and between themselves. These high z-scores indicate sig-
nificant differences in performance between the hybrid models and the other models, such
as MLP, CNN, and LSTM. However, the mentioned exceptions suggest that the perfor-
mance differences between these specific pairs of models were less pronounced, indicating
a relatively similar performance in those cases.

In the provided results, there were only three instances where the corresponding p-values
exceeded the threshold of 0.05. This implies that the models being compared (LSTM with
CNN, GRU with CNN-LSTM, and GRU with CNN-GRU) are not significantly different
from each other.

Therefore, based on the Delong test results, it can be concluded that although the metrics
scores presented in section 4.1 exhibit small ranges of variation, there are substantial
disparities between the predictions of most of the models. Notably, the models which
exhibit superior metric scores, the hybrid models, emerge as significantly different from
each other but similar to the GRU.

Hence, considering both the performance metrics and the computational cost, the CNN-
GRU model is a compelling choice for real-time lightning forecasting applications where
the superior accuracy, availability of computational resources and weather data, and
prompt predictions are crucial factors to be considered. By opting for the CNN-GRU
model, practitioners can strike a balance between superior performance and efficient re-
source utilization, making it an ideal candidate for real-time lightning forecasting appli-
cations that require both timely and accurate predictions through a more sustainable and
energy-efficient approach.
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Figure 4.1: Normalized Confusion Matrix The Neural Network Models - Panel (a) represents the
loss curve for MLP, (b) for CNN, (c) for LSTM, (d) for GRU, (e) for CNN-LSTM, and (f) for
CNN-GRU.

Source: Developed by the author.
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Figure 4.2: DeLong Test:Statistical Comparison of Developed Models P-values and Z-values

Source: Developed by the author.
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Chapter Five

Conclusion

5.1 Conclusion

This work explored the use of deep learning models for lightning prediction and evaluated
their performance in predicting lightning activity up to 6 hours ahead. The results of the
evaluation have provided valuable insights into the capabilities and limitations of different
models in capturing key features and patterns related to lightning occurrence.

The models showed great overall performance predicting both the "No lightning activity"
class and the "lightning activity" class. The GRU and hybrid models especially demon-
strated superior performance across multiple metrics, highlighting the potential benefits
of combining different architectures or techniques.

It is worth noting that even though variations in the metrics scores between the models
may seem small, the Delong’s test showed that the most models are indeed statistically
significantly different from each other. Thus, while considering the overall performance
across both classes, the CNN-GRU model in particular exhibited a consistently higher
performance across various metrics while being statistically different from all the other
models. These models showed a balanced ability to predict both "No Lightning" and
"Lightning" instances accurately, making them well-suited for tasks that require accurate
detection of lightning activity.

Furthermore, the evaluation of computational costs revealed that the MLP and CNN
models had shorter training times, while the LSTM and GRU models required longer
training times due to their complex architectures. In terms of inference time, the CNN
model demonstrated the fastest prediction speed, while the MLP model had the longest
inference time. The hybrid models generally showed reduced training and inference times
compared to their individual components, highlighting the efficiency gained by combining
different architectures.

Based on the performance metrics and computational cost considerations, the CNN-GRU
model emerges as a promising choice for real-time applications that require accurate and
prompt lightning predictions. Its balanced performance in detecting both "No Lightning"
and "Lightning" instances, along with its relatively low training time and inference speed,
make it a suitable model for weather monitoring systems.

In conclusion, this work makes a significant contribution to the field of lightning prediction
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through its comprehensive evaluation of deep learning models that utilize globally avail-
able meteorological information as input. The findings from this research shed light on
the effectiveness and potential of these models, to address the challenges posed by limited
local data availability in certain regions. By leveraging advanced deep learning techniques
and harnessing meteorological data on a global scale, this study opens up new avenues for
facilitating lightning prediction and ultimately enhancing public safety in regions prone
to lightning strikes, through a more energy-efficient and thus more sustainable approach.
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