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Abstract. This paper presents results for coupled heat and mass transport under turbulent flow regime in a horizontal 
cylindrical annulus filled with a fluid saturated porous medium. Two driving mechanisms are considered to contribute 
to the overall momentum transport, namely temperature driven and concentration driven mass fluxes. Aiding and 
opposing flows are considered, where temperature and concentration gradients are either in the same direction or of 
different sign, respectively. Modeled equations are presented based on the double-decomposition concept, which 
considers both time fluctuations and spatial deviations about mean values. 
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1. INTRODUCTION  
 

The study of double-diffusive natural convection in porous media has many environmental and industrial 
applications, including grain storage and drying, petrochemical processes, oil and gas extraction, contaminant 
dispersion in underground water reservoirs, electrochemical processes, etc. The importance of double diffusive natural 
convection can be better appreciated by the volume of papers published in this field, which was reviewed by Nield and 
Bejan (1999). The analyses of natural convection in a horizontal cylindrical annuli filled by a porous material has been 
subject of a number of studies in recent years. Thermal insulators, cryogenics, thermal storage systems, electronic 
cooling, inert gas insulation of high-voltage electric cables and the determination of the requirements for aircraft cabin 
insulation. 

Accordingly, double diffusive convection in a vertical cavity subject to horizontal temperature gradients has been 
investigated by Trevisan and Bejan (1985, 1986), Goyeau et al. (1996), Mamou et al. (1995, 1998), Mohamad and 
Bennacer (2002), Nithiarasu et al. (1997), Bennacer et al. (2001, 2003), among others. In most of the aforementioned 
papers, the intra-pore flow was assumed to be laminar and it was demonstrated that, depending on the governing 
parameters of the problem and on the thermal to solute buoyancy ratio, various modes of convection prevail.  

The natural convection in cylindrical annular geometry filled with porous material also have been studied by distinct 
numerical approaches, such as the finite-difference method reported by Caltagirone (1976) and Burns and Tien (1979). 
Finite element method is found in the work of  Motjabi et al. (1987). 

Motivated by the foregoing, in an earlier paper de Lemos and Tofaneli (2004) a mathematical framework for 
treating turbulent double-diffusive flows in porous media was presented, but no numerical simulations were published. 
That work was derived from a general mathematical model for turbulent flow in porous media Pedras and de Lemos 
(2003), which was developed under a concept called “double-decomposition” de Lemos (2005). Such concept 
considered time fluctuations of the flow properties in addition to spatial deviations, in relation to a volume-average, 
when setting up macroscopic equations for the flow. Using such concept, non-buoyant Rocamora and de Lemos 2000 as 
well as buoyant heat transfer has been considered Braga and de Lemos (2004, 2005, 2006 and 2009) in addition to 
turbulent mass transfer de Lemos and Mesquita (2003). However, in none of the above applications, results for 
turbulent double diffusion in porous media were presented. 

The purpose of this contribution is to show numerical results for turbulent double-diffusive in porous media, which 
are obtained with the mathematical model earlier proposed in de Lemos and Tofaneli (2004). To the best of the authors´ 
knowledge, no solutions for turbulent flow using the work in de Lemos and Tofaneli (2004) have been previously 
published. Here, double-diffusive turbulent natural convection flow in porous media is considered. 
 
2. MATHEMATICAL MODEL 
 

The problem considered here is showed schematically in Fig. 1a and refers to a concentric annulus completely filled 
with porous material with outer and inner radii 0r  and ir , respectively, and 20 == irrR . The top and bottom walls are 

kept insulated and the porous medium is considered to be rigid. The binary fluid in the cavity of  Fig. 1a is assumed to 
be Newtonian and to satisfy the Boussinesq approximation. 

 
2.1. Macroscopic equations double-diffusion effects 
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The equations used herein are derived in details in de Pedras and de Lemos (2003), de Lemos and Tofaneli (2004) 
and de Lemos (2005) and for that their derivation need not be repeated here. They are developed based on volume-
averaging procedures which are fully described in the literature Hsu and Cheng (1990), Bear (1972) and Whitaker 
(1966, 1967). 

The macroscopic continuity equation is then given by, 
 

0=∇ Du  (1) 

 
where the Dupuit-Forchheimer relationship, i

D 〉〈= uu φ , has been used and i〉〈u  identifies the intrinsic (liquid) average 

of the local velocity vector u . The macroscopic time-mean Reynolds equation for an incompressible fluid with 
constant properties is given as, 
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where the last two terms in Eq. (2) represent the Darcy-Forchheimer contribution. The symbol K  is the porous medium 
permeability, Fc  is the form drag coefficient (Forchheimer coefficient), ip〉〈  is the intrinsic average pressure of the 

fluid, ρ  is the fluid density, µ  represents the fluid viscosity and φ  is the porosity of the porous medium. Buoyancy 

effects due to temperature and concentration variations within the cavity are also shown in Eq. (2). The macroscopic 

Reynolds stress i〉′′〈− uuρφ  is modeled as,  
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is the macroscopic deformation tensor, 2iik 〉′⋅′〈=〉〈 uu  is the intrinsic turbulent kinetic energy, k  and φµt , is the 

turbulent viscosity, which is modeled in de Lemos (2005) similarly to the case of clear flow, in the form, 
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Coefficients φβ  and 

φ
βC  in Eq. (2) are used to write the Grashof numbers associated with the thermal and solute 

drives, in the form, 
 

2

3

ν
βφ

φ

THg
Gr

∆
= ,  

2

3

ν
β

φ
φ

CHg
Gr

C

C

∆
=  (6) 

 
where T∆ = 21 TT −  and C∆ = 21 CC −  are the maximum temperature and concentration variation across the cavity, 

respectively. One should note that for opposing thermal and concentrations drives, such maximum differences are of 
opposing signs.  

The ratio of Grashof numbers defines the buoyancy ratio, N , in the form 
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giving for Eq. (2), 
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Either 0=

φ
βC  or 0=∆C  results in 0=N , or say, only thermal drive applies. Also, for 0=

φ
βC  and 0≠∆C  in Eq. 

(8), although no concentration drive is modeled, a distribution of C within the field will occur due to the flow 
established by the thermal drive.  

Additional transport equations read (see de Lemos and Tofaneli (2004) for details). 
 
Heat transport 
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Mass transport 
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Transport equations for ik〉〈  and its dissipation rate ( ) ρµε iTi 〉′∇′∇〈=〉〈 u:u  including additional effects due to 

temperature and concentration gradients are proposed in as Pedras and de Lemos (2003): 
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where 1c , 2c , 3c  and kc  are constants. The generation rate of k  due to buoyancy is represented by iGβ  and i

C
Gβ  for 

both the thermal and solute drives, respectively de Lemos and Tofaneli (2004).   
 
2.2. Integral Parameter 
 

The local Nusselt number on the heated inner cylinder for the horizontal cylindrical annuli considering half domain 
is given by, 
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The average Nusselt number is then given by, 
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3. NUMERICAL DETAILS 

 
The numerical method employed for discretizing the governing equations is the control-volume approach. A hybrid 

scheme, which includes both the Upwind Differencing Scheme (UDS) and the Central Differencing Scheme (CDS), 
was used for interpolating the convection fluxes. The well-established SIMPLE algorithm Patankar and Spalding 
(1972), was followed for handling the pressure-velocity coupling. Individual algebraic equations sets were solved by the 
SIP procedure of Stone (1968). In addition, concentration of nodal points closer to the walls reduces eventual errors due 
to numerical diffusion which, in turn, are further annihilated due to the hybrid scheme here adopted. Calculations for 
laminar and turbulent flows used a 5050×  stretched grid for all cases (Fig. 1b). For turbulent flow calculations, wall 
log laws were applied. 
 
4.  RESULTS AND CONCLUSIONS 

 
The problem considered is showed schematically in Fig. 1 and refers to a concentric annulus completely filled with 

porous material with outer and inner radii 0r  and ir , respectively, and 20 == irrR . The cavity is isothermally heated 

from the inner cylinder and cooled from outer cylinder, with 21 TT >  and 21 CC > . The Rayleigh number is defined as 

( ) feffifpm kTKrcgRa νρβφ ∆= . As in the case of a square cavity filled with porous material, the parameters (Prandtl 

number, inertia parameter, conductivity ratio) are fixed. 
Figure 2 and 3 shows the isotherms and streamlines of a concentric annuli heated from the inner cylinder and cooled 

from outer cylinder completely filled with porous material for 25=mRa , 200=mRa  and 2=R , for buoyancy 

ratio, 0=N . The figure show a good agreement with the work of  Braga and de Lemos (2003) and reproduce the basic 
features of the flow.  

Figure 4 shows corresponding isolines of turbulent kinetic energy for 200=mRa  and 2=R . The figure clearly 

shows that in the upper part of the annular region the turbulent kinetic energy presents its highest levels. The same Fig. 
6 when the ratio of thrust is 1=N , we can observe that the results to 0=N  have a good agreement with the findings in 
the literature. 

Table 1 finally shows, for selected Rayleigh numbers, the average Nusselt number Nu  based on the heated inner 
cylinder. In comparison, the turbulent average Nusselt numbers are significantly greater than the ones obtained with a 
laminar model. A possible explanation for it is that the thin thermal boundary layer above the inner cylinder entails a 
steeper temperature gradient when turbulence is considered, increasing then the value of the average Nusselt number 
based on the inner cylinder, the same situation presents to the values of Nu  when 1=N . Again, it is seen from Tab.1 
that the agreement between the present and previous results is reasonable. 

 
 

 

 
a) 

 

 
b) 

Figure 1: Schematic of the problem: a) geometry; b) grid. 
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Figure 2: Turbulent Isotherms and Streamlines for2=R , 25=mRa  with 2.0=φ  and mmDp 3= : a) Presents Results, 

with 0=N , b) Braga and de Lemos (2003) (only thermal model). 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Turbulent Isotherms and Streamlines for 2=R , 200=mRa  with 2.0=φ  e mmDp 3= : a) Presents Results, 

with 0=N , b) Braga and de Lemos (2003) (only thermal model). 
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Figure 4: Isolines of turbulent kinetic energy for 2=R , 200=mRa  with 2.0=φ  e mmDp 3= : a) Present Results, with 

0=N , b) Braga and de Lemos (2003). (only thermal model). 
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Figure 5: Turbulent Isotherm and Isoconcentration lines for 2=R , 2.0=φ and mmDp 3= : a) 25=mRa , b) 

200=mRa ,with 1=N . 

 

  
Figure 6: Streamlines and Isolines of turbulent kinetic energy for  2=R , 2.0=φ  e mmDp 3= : a) 25=mRa , b) 

200=mRa  with 1=N . 

 
Table 1: Average Nusselt Number for mRa  ranging from 25 to 500 with, mmDp 3=  and 2.0=φ . 

 
Applied Model \ Ra 25 100 200 500 

Braga (2003) 1.860 2.296 2.666 4.231 
Laminar 
Solution Presents 

Results, with 
0=N  

1.856 2.272 2.649 4,263 

Braga (2003) 4.689 6.852 7.984 9.450 
Turbulent 
Solution 

Presents 
Results, with 

0=N  
4.758 6.918 7.626 9.736 

With 1=N  
Laminar Solution 1.919 2.367 3.198 4.941 

Turbulent Solution 4.842 7.025 8.233 9.861 
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